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Emerging Edge Devices

 Various devices of rich, diverse
resources

* phones/tablets/wearables, |oT,
vehicles

* perform sensing, communication,
storage, processing operations

* Pervasive, high density
distribution everywhere by
opportunistic congregation

e customers in cafes, passengers at
boarding gates

* |oT devices in homes, offices,
shopping malls

* vehicles around city streets
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New Computing Paradigm: Pervasive Edge
Computing (PEC) N born b

» Data storage /processing and decision all are born m\ ‘
performed at the edge A
e Contrast to cloud computing where the edge ~m

’/
provides only data, but storage, processing { > A row
- . I
and decision are done in the backend morph
* Promote data as first class citizens E J

* Data become independent entities decoupled

from specific devices (e.g., their producers)
* Same/similar data/resources can be provided

by different devices . %

* Whichever willing/capable should be used %
propagate ‘\\G\\D

* born (gathered by sensors) \Q_K;/
* grow (accumulated over space/time) =
* morph (transformed in syntax/semantics after l

processing) ﬁ

* multiply (information extracted by merging
different data inputs)

* propagate (disseminate) hibernate
«eventually hibernate/die (archived/eliminated)
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Advantages of PEC

Zero barrier

* No infrastructure cost/complexity in deploying,
maintaining dedicated cloud backend

Low latency

* No need to communicate with cloud. Processing occurs
near data, greatly reducing back-and-forth transmission
delay

Connectivity independence

* No internet necessary. Communication among peer
devices even without the Internet

Democratic creativity

* No central authority. Devices are free to decide with
which others to collaborate and how, enabling flexible
and diverse applications
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Challenges and Opportunities in PEC

* Challenges

* Heterogeneity: types/quantities of device
capability/resources vary greatly

* Uncertainty: highly dynamic changes in mobility,
connectivity, resource availability
(sensing/computing/storage/communication)

* Diverse ownership: no central authority, mostly
voluntary sharing

* Opportunities

* Pervasive distribution: devices everywhere

* Existence of more powerful devices: vehicles, main
powered, to help coordinate peers and perform
intensive work for others
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Peer Data Sharing (PDS)

* Discover nearby, opportunistically available

data, and retrieve them ——

- : MENU
 avoid blindly requesting
non-existent data

* Peer Data Discovery (PDD)
e Build a “menu” of available data

* Peer Data Retrieval (PDR)
e Retrieve desired data
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Data as Independent Entities

« Data are self-sufficient entities decoupled from original producers

« widely cached, thus referenced, stored and accessed from
any willing and capable devices

» Data Descriptors

 When produced, each data item is associated with a data descriptor (a
metadata entry)

* Metadata is also a kind of data
* Widely cached, possibly separately from respective data
* All such entries together describe what data may exist in the environment
(the menu)
* One possible form: key-value pairs
* {key: value}

* Example
* Data Type: NO, sample
e Attributes: time and location of sample
* Namespace: environment monitoring/atmosphere
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Data Query, Response and Caching

A consumer sends queries to specify desired data and
retrieve them from other devices

Queries propagate over the network towards desired data

* Flooded if no routing information for the data exists (e.g., newly
generated data)

e Otherwise, follow content-centric routing to reach the data
(explained later in PDR)

Response

* A provider sends responses to return data that are requested by
queries

* Responses are delivered back to the consumer following the
reverse path of the query

Caching

* Intermediate nodes can cache the data for future requests
* Shorter access latency for future requests
* Better robustness to uncertainty (e.g., node mobility, connectivity failure)
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Query, Response and Caching

C
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esponse |
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Data cached en-route

A 1. The consumer propagates a query
D Query 2. Each device includes matching data in its
/\ response
A AA 3. Responses follow reverse path to reach the
consumer, and their data may be cached en-
route

E

D
Response
JAN Query AA \ D
AAO

A A A Matching data
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Peer Data Retrieval (PDR)

* Once the “menu” of data descriptors is retrieved, the
consumer decides which data items to “order”

* Two typical scenarios: large and small data

e Scenario 1: a large data item (e.g., a video clip) consisting of
many small chunks, each cached by multiple devices.

e Scenario 2: many small data items cached by multiple devices
(e.g., air pollution samples in certain area).

* We focus on Scenario 1. Scenario 2: follow the same
process as metadata discovery discussed earlier

* Question: How to obtain a copy of each chunk quickly and
efficiently?

FAR
BEYOND 1




Q\\\‘ Stony Brook University

Two-Phase Data Retrieval

* Phase 1: Building content-centric routing tables
* Phase 2: Recursive chunk retrieval

* Content-centric routing table
* Each routing entry at a node {data_chunk_ID, m, n}

tells how far in minimum hops m, via which neighbor(s)
n,p to reach a chunk data_chunk_ID
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Creating Routing Tables

* Phase 1: Routing Table Creation

* A consumer propagates a query for routing table entries
of desired data D

* A node M, with desired chunk i responds: {D-i, O, -}

* At hop k, node M, adds a local routing entry: {D-i, k, M, ,},
and continues forwarding this entry towards the
consumer

* Finally at the consumer: via which neighbor, in how many
hops to reach the nearest copy for each chunk
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Recursive Chunk Retrieval

 Phase 2: Recursive Chunk Retrieval

e A consumer sends sub-queries, each requesting a subset of chunks from a
direct neighbor

e Upon receiving a sub-query, a node
* replies requested chunks it has

* divides remaining chunks into sub-queries, then sends to neighbors with minimum
hops to those chunks

* Upon receiving replied chunk, a node forwards it back towards the
consumer

* Chunks are retrieved recursively from all downstream nodes

* Use an algorithm to balance the load among neighbors to shorten
retrieval latency

* Some neighbors on shortest paths send more chunks, thus more workload
* Objective: minimize the maximum load among all neighbors
* First assign each chunk to a neighbor with smallest hop count

* Heuristic: move a chunk from the neighbor with highest load to the

neighbor with the 2" shortest path; repeat until the highest load no longer
decreases
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Data Discovery Completeness and Latency

1 _ 12 “‘"ﬂ’x/-v
08! ] 10’&,“ 0.98 |
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& 04| 4 S o 0.94 1 2 people/min move inside —— |
1 © 4 people/min move inside —%— |
0.2 Recall —— | 2 - 092} ¢ people/min move inside
| | Latgncy —%— 0 0.9 8 people/mm move inside .
5K 10K 15K 20K "0 05 1 15 2 25
M # metadata entries People Join/Leave per Minute
* 100% discovery in a few seconds  100% discovery despite mobility

Observation: PDD discovers all metadata entries in short time
despite mobility

Setup:

e 100 node network

e Simulation parameters based on an Android prototype
*..Mobility based on 8 hours of real world human movement observation
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Data Retrieval Latency
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e 10’s of seconds for 10-20MB data; e Latency unchanged despite

* Retrieve nearest copies in 2-3 hops mobility

(message amount 2-3 times of data size)

Observation: PDR retrieves large size data in short time
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Data Caching

* In PEC, a node stores a copy of data it forwards,
overhears, or receives

* The node itself may not need the data

* Benefits
* Cached copies can be used to meet consumer needs
* Less latency: nearest copy sent

* More robustness: copies exist after some node
failure/mobility

* Higher bandwidth: different portions of the same data can be
retrieved from multiple copies

* Question: Which node should store a copy of data?
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Limitation of Existing Caching Work

* Fairnessin workload is not
considered
* Assume all nodes obey one

authority (e.g., owner of the whole
networky

e Some best” nodes are dictated to
shoulder more caching workload
than others

* Node ability and willingness are not

considered
* In edge computing, no central \
authority exists !
* devices belong to different owners; ‘ |
each has limited resources and ‘

wants to control its resource
contribution
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Metric for Caching Fairness

* Fairness Degree Cost

* The less resources, the higher the cost, thus less willing
to cache more data

* One simple form

. f: storage used

* Intuition: put data on nodes with more available
resources, thus lower cost

storage available
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Metric for Contention Cost

* Wireless contention causes delays in data access

* Collisions due to multiple nodes send simultaneously,
thus loss of messages

* Back-off time, retransmission add to the delay

* Contention induced-delay cost

* Quantify contentions along data delivery path between
nodes i and j

* Proportional to total amount of data messages along the
path
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Cache Placement Problem Formulation

* Problem: Given a network topology, for each data
chunk, determine which nodes should cache a copy

* Objective: Minimize a weighted sum of fairness and
contention costs

* Placement should achieve fairness (similar loads
among nodes) while minimizing contention (thus
retrieval latency)

e An integer programing problem is formulated

. I\/IaBto multiple Connected Facility Location (ConFL)
problems added together

* ConFL problem is an NP-hard problem, thus, our problem is
also NP-hard
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Centralized Approximation Algorithm

* The algorithm adopts a 6.55-approximation
algorithm of ConFL problem as a subroutine

* |t preserves the approximation ratio

« Complexity is O(N3), N: number of nodes in the
network

* Limitation: require global information at each node
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Extend to Distributed Algorithm

e Each node needs to decide individually whether or not to
cache

* The centralized approximation algorithm requires global
information, which is difficult to obtain

 Basic idea of distributed algorithm

* Each node asks other nodes within k hops whether they can help
cache the data

* kis a preset parameter, e.g., 2-3

* If a node receives more yes’ responses, it is more likely to cache
data

* Message overhead: O(QN + N?)

* (J: number of data chunks cached
* N: number of nodes
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Fairness Evaluation

* Compare with two existing algorithms:
* Contention based (Cont): minimizing total contention cost
* Hop count based (Hopc): minimizing total transmitted hops

* Gini coefficient is a common metric to quantify (in)equality in a set
of values

* Value between 0-1: the smaller, the better (fairer)

1 ./.,__.——i—-l—-—.—r 1
508| . §os
o S
%O.Gf ABx—O—Hoc+ %06 Appx —@— Hopc ——
S 0.4 ’—‘\‘\'St._‘\_‘\. ¢— Cont S04 Dist —e— Cont
‘g ‘g
02 "’*.._.__,_. 02

0 4x45x5 6x6 Tx7 8x8 9x9 10x10 020 40 60 80 100120 140 160 180

Grid Size Number of Nodes
(a) Grid network (b) Random network

* Our algorithms (Appx/Dist) achieve much better fairness than two
existing algorithms (Cont/Hopc)
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Contention Cost Evaluation

e Contention-induced delay cost on random networks
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Contention Cost (10%)
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* Minimum contention cost

e Our algorithms are comparable to Cont, which has minimum
contention cost

e Our algorithms are much lower than Hopc

* Observation: our algorithms achieve minimum contention
cost while greatly improving fairness

FAR
BEYOND




‘\\\‘ Stony Brook University

Secure Data Caching in PEC

* A major concern in edge computing: security

* Data transactions and privacy protection in an edge computing
environment often have to involve a trusted third-party

* Blockchain is a promising technology to combat this challenge. It

can be used to ensure data transactions unmodifiable and
undeniable

* A blockchain system consists of a chain of blocks (records). Each
block contains the hash result from its previous block to form a chain

* Blockchain has many security features over a regular distributed
system

» keep complete transaction history
* designed against data modification

* No need for a trusted third-party in the transactions and can
avoid “a central point of failure”
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Blockchain on Edge

« Combining blockchain with edge computing can have many
advantages that ensure

« Secure payment: Every transaction is recorded in the blocks,
thus cannot be changed or denied

 Access-control: Data producers can directly manage
subscriptions to deliver for-profit data to consumers

* Privacy: Blockchain can protect the identity of the users
« Challenges
« Limited resources, e.g., storage, computing power

» Resource constraints of edge devices reduce the applicability of
blockchain

* Storing all blocks and data on every edge node is not feasible

* Edge devices have less computing power and energy capacity
compared to traditional blockchain miners

« Directly applying the existing blockchain approach onto edge is
not feasible
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Blockchain on Edge - Our Approach

« Design a blockchain system suitable for edge
environment, focusing on reducing storage,

latency and energy cost

« |Instead directly storing data in blocks, only store
metadata in blocks, and distributively store data and
blocks in key locations for quick access

- Data can be searched through metadata, and can be
accessed from nearby cached nodes

» Blocks are also distributively stored among nodes

« Adopt Proof of Stake (PoS) consensus mechanism to
achieve consensus among nodes to reduce energy cost

* |t does not require a compute-intensive process to
achieve consensus as Proof of Work (PoW)
consensus mechanism
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Blockchain on Edge - System
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Fair and Efficient Storage Distribution

 After metadata are created and stored in blocks,
data items are then stored onto nodes
distributively

« Metadata contain where the data item is stored and
users can access the data based on the information

« Some nodes in critical locations can be accessed
easily. Such nodes will store data items for other
nodes to access

« Fair (balanced) storage enables more nodes to
participate in caching and avoids overloads

* Nodes with more resources and at key locations are
more likely to be selected to store data and blocks

FAR
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Recent Block Storage

* Edge devices, often with wireless transmission and
mobility, may miss newly generated data and blocks

* Recently accessed blocks are more likely to be
requested and more vulnerable to temporary
disconnection of nodes

* If recent blocks are more pervasive in the network, it is
easier to retrieve them

* Nodes are required to cache a certain number of
most recent blocks and replace the blocks using
FIFO

 The number of recent blocks a node caches also depends
on the locations and fairness
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Consensus Mechanism (PoW)

* A blockchain system needs a consensus mechanism to
achieve distributed consensus on new block generation

Proof of Work is a commonly used

consensus mechanism, e.g., Bitcoin

e Miners compete to find a certain value, when
hashed together with the whole block, the
hashed value satisfies a certain target value

e \ery time and energy consuming process

e Relatively secure, if more than half of nodes in
the system are honest
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Consensus Mechanism (PoS)

Proof of Stake (PoS) is another commonly used

consensus mechanism

e Some cryptocurrencies have adopted this idea, e.g.,
Peercoin

e Creator of the next block is randomly selected based
on the stake, e.g., wealth, age, contributions

e Less time for devices to compute and reach
consensus

e Maybe less secure compared to PoW
e More practical to implement PoS in edge environment

FAR
BEYOND 33




Q\\\‘ Stony Brook University

Proof of Stake

e Selection rule: If a node contributes more, i.e.,
storing more data and creating more blocks, it will
have a higher probability than others to be the
creator of the next new block

e We reward the node that has contributed more to
the system
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Performance under Different Data Generating Rates
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* 1-3 data items generated per minute, in total 500 blocks generated

* Gini coefficient (left) for date storage (load balance) on nodes and average delivery time
(right) for different network sizes

* For Gini coefficient, it remains very low among 0.15, showing small disparities among node
storage (balanced load)

* Data delivery time grows almost linearly with the number of nodes, and remains almost the
same with different data generating rates
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Performance under Different Storage Allocation Strategies
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* One data item generated per minute, running 500 blocks

* Average delivery time (left) and transmission overhead (right) over different
network sizes

* For delivery time, the proposed data storage is shorter than random storage

* The average transmission amount is less when network size is large.
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Architecture Support for PEC

* Edge devices exhibit huge heterogeneity: types/quantities of
device capability/resources vary greatly

* Many edge applications demand both hardware and
software specialization not available on commodity edge
devices

* A modular, composable hardware/software architecture for
customizable edge devices

* Diverse modularized FPGA/software computation
components

e Easily composed electronically and computationally like
Lego pieces

* As a companion to augment a commodity mobile device
like GPU in a multicore processor
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Edge Node Architecture: Towards Low-Cost
Modular Specialization

Sensors Radios
m m Y Y

FPGA Accelerator Librar)f(
« data/signal processing

Reconfigurable Electrical Interfaces

. security i FPGA Companion Board
Software Computation: Commodity Mobile Device
Component Library (e.g., smartphone, tablet,

embedded system)

FAR
BEYOND




Q\\\‘ Stony Brook University

Data Stream Processing System Architecture on
Customizable Edge Devices

A data processing system runs on * Developers compose reusable
customizable edge devices hardware/software modules and
 Resource discovery service finds components into applications

what hardware/software resources

are available in local and nearby edge * One application may require

devices collaboration and run jobs

« Composition service creates jobs in among multiple edge devices
form of connected graphs among Application ~ .
modules, using discovered resources |n| Developer Composition Mapping

« Mapping service schedules which > Service Service
portions of the graph run on Which .........................................
edge nodes PE Execution Container

* PE execution container runs locally Resource | | ------f0RamNI0s Fault
deployed application jobs Discovery | | » PR : /.-:> Tolerance

* Fault tolerance service handles Service s - .i, : Service
resource variability due to : \./ E : \.+
competition/mobility R T T

FPGA Companion Board | | Commodity Mobile Device
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Three Types of “Pebble” Nodes
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Future Research Agenda in PEC

* Discovery and retrieval at larger scale (e.g., campus)
* Pure peer based is not scalable
* Need the help of more powerful nodes

e Build an infrastructure of more powerful nodes (e.g., static,
more resources). They exchange information to store/serve
metadata and data for others

e Cache management

e Aggressive caching: cache anything overheard

* Reason: storage is relatively abundant while contact is rare, esp.
with mobility%e g., vehicles)

* How to replace existing data when cache is full
* Incorprate emerging storage devices

* Autonomous, efficient processing under uncertainty
(mobility, connect|V|ty, resources

* Nodes automatically decide what processing to invoke where,
on what raw data, to produce desired output
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Future Research Agenda in PEC

* Trust management

* How much trust on whose/what data, on trusted data processed
by less trusted nodes, or merged output from producers of
different trust levels?

* Security and privacy
* How to protect against attacks?

* Attacks are much easier to launch in a loosely coupled environment
like PEC, without central authority or definitive boundary

* Such asinjecting bogus data, claiming others’ identities, ...
* How to confine the propagation scope of sensitive data?

* I[ncentive mechanisms

e Participation is voluntary. How to compensate contributors
(sensing/processing) appropriately to stimulate collaboration?

* Expressive naming structures

* Adapt semantic web, linked data techniques for more expressive
data descriptions based on content, not format

 Smarter edge: machine learning on edge, 5G and 6G

Im\q‘ewces
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Summary

* A new paradigm of pervasive edge computing is emerging

Sensing, processing/decision all are done at the edge
Sharp contrast to cloud computing

e A data centric architecture offers a viable solution

Data as first class citizens
Robust and fast data discovery and retrieval
Fair cache placement

* Time for exciting research: the field is wide open
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Architecture support

Scalable data discovery, retrieval
Cache management
Autonomous processing

Trust, security and privacy
Incentives

Semantic data naming

Machine learning on edge

* 5@, 6G edge devices 43
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Thank youl

Yuanyuan Yang
www.ece.stonybrook.edu/~yang
yuanyuan.yang@stonybrook.edu
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