
‘

1

Yuanyuan Yang

Distinguished Professor of Electrical and Computing Engineering

and Computer Science

Stony Brook University

National Science Foundation

‘

Outline

2

• Pervasive edge computing (PEC)

• Motivation and concept

• Challenges, opportunities and solution

• Data discovery and retrieval in PEC

• Data caching in PEC

• Blockchain for secure data caching in PEC

• Architecture support for PEC

• Future research agenda in PEC

• Summary

‘

Emerging Edge Devices

• Various devices of rich, diverse
resources
• phones/tablets/wearables, IoT,

vehicles
• perform sensing, communication,

storage, processing operations

• Pervasive, high density
distribution everywhere by
opportunistic congregation
• customers in cafes, passengers at

boarding gates
• IoT devices in homes, offices,

shopping malls
• vehicles around city streets

3

‘

New Computing Paradigm: Pervasive Edge
Computing (PEC)

• Promote data as first class citizens

• Data become independent entities decoupled
from specific devices (e.g., their producers)

• Same/similar data/resources can be provided
by different devices

• Whichever willing/capable should be used

• Data become living organisms

• born (gathered by sensors)

• grow (accumulated over space/time)

• morph (transformed in syntax/semantics after
processing)

• multiply (information extracted by merging
different data inputs)

• propagate (disseminate)

• eventually hibernate/die (archived/eliminated)

4

born
born

grow
morph

multiply

propagate

born

hibernate

• Data storage /processing and decision all are
performed at the edge
• Contrast to cloud computing where the edge

provides only data, but storage, processing
and decision are done in the backend

‘

Advantages of PEC

• Zero barrier
• No infrastructure cost/complexity in deploying,

maintaining dedicated cloud backend

• Low latency
• No need to communicate with cloud. Processing occurs

near data, greatly reducing back-and-forth transmission
delay

• Connectivity independence
• No internet necessary. Communication among peer

devices even without the Internet

• Democratic creativity
• No central authority. Devices are free to decide with

which others to collaborate and how, enabling flexible
and diverse applications

5

‘

Challenges and Opportunities in PEC

• Challenges
• Heterogeneity: types/quantities of device

capability/resources vary greatly
• Uncertainty: highly dynamic changes in mobility,

connectivity, resource availability
(sensing/computing/storage/communication)

• Diverse ownership: no central authority, mostly
voluntary sharing

• Opportunities
• Pervasive distribution: devices everywhere
• Existence of more powerful devices: vehicles, main

powered, to help coordinate peers and perform
intensive work for others

6

‘

Peer Data Sharing (PDS)

7

• Discover nearby, opportunistically available
data, and retrieve them
• avoid blindly requesting

non-existent data

• Peer Data Discovery (PDD)
• Build a “menu” of available data

• Peer Data Retrieval (PDR)
• Retrieve desired data

‘

Data as Independent Entities

8

• Data are self-sufficient entities decoupled from original producers

• widely cached, thus referenced, stored and accessed from
any willing and capable devices

• Data Descriptors

• When produced, each data item is associated with a data descriptor (a
metadata entry)

• Metadata is also a kind of data

• Widely cached, possibly separately from respective data

• All such entries together describe what data may exist in the environment
(the menu)

• One possible form: key-value pairs
• {key: value}

• Example

• Data Type: NO2 sample

• Attributes: time and location of sample

• Namespace: environment monitoring/atmosphere

‘

• A consumer sends queries to specify desired data and
retrieve them from other devices

• Queries propagate over the network towards desired data
• Flooded if no routing information for the data exists (e.g., newly

generated data)
• Otherwise, follow content-centric routing to reach the data

(explained later in PDR)

• Response
• A provider sends responses to return data that are requested by

queries
• Responses are delivered back to the consumer following the

reverse path of the query

• Caching
• Intermediate nodes can cache the data for future requests

• Shorter access latency for future requests
• Better robustness to uncertainty (e.g., node mobility, connectivity failure)

9 Data Query, Response and Caching

‘

Query, Response and Caching

10

▲●

■★

▲■★

▲▲●

Response
▲

Query
△

Response
▲

Response
▲▲

▲▲▲

Query
△

▲●▲

1. The consumer propagates a query
2. Each device includes matching data in its

response
3. Responses follow reverse path to reach the

consumer, and their data may be cached en-
route

Data cached en-route

△ Query
▲▲▲ Matching data

A

B

C

ED

‘

Peer Data Retrieval (PDR)

11

• Once the “menu” of data descriptors is retrieved, the
consumer decides which data items to “order”

• Two typical scenarios: large and small data
• Scenario 1: a large data item (e.g., a video clip) consisting of

many small chunks, each cached by multiple devices.
• Scenario 2: many small data items cached by multiple devices

(e.g., air pollution samples in certain area).

• We focus on Scenario 1. Scenario 2: follow the same
process as metadata discovery discussed earlier

• Question: How to obtain a copy of each chunk quickly and
efficiently?

‘

Two-Phase Data Retrieval

12

• Phase 1: Building content-centric routing tables

• Phase 2: Recursive chunk retrieval

• Content-centric routing table
• Each routing entry at a node {data_chunk_ID, m, nID}

tells how far in minimum hops m, via which neighbor(s)
nID to reach a chunk data_chunk_ID

‘

Creating Routing Tables

13

• Phase 1: Routing Table Creation
• A consumer propagates a query for routing table entries

of desired data D

• A node M0 with desired chunk i responds: {D-i, 0, -}

• At hop k, node Mk adds a local routing entry: {D-i, k, Mk-1},
and continues forwarding this entry towards the
consumer

• Finally at the consumer: via which neighbor, in how many
hops to reach the nearest copy for each chunk

‘

• Phase 2: Recursive Chunk Retrieval
• A consumer sends sub-queries, each requesting a subset of chunks from a

direct neighbor
• Upon receiving a sub-query, a node

• replies requested chunks it has
• divides remaining chunks into sub-queries, then sends to neighbors with minimum

hops to those chunks

• Upon receiving replied chunk, a node forwards it back towards the
consumer

• Chunks are retrieved recursively from all downstream nodes

• Use an algorithm to balance the load among neighbors to shorten
retrieval latency
• Some neighbors on shortest paths send more chunks, thus more workload
• Objective: minimize the maximum load among all neighbors
• First assign each chunk to a neighbor with smallest hop count
• Heuristic: move a chunk from the neighbor with highest load to the

neighbor with the 2nd shortest path; repeat until the highest load no longer
decreases

14

Recursive Chunk Retrieval

‘

Data Discovery Completeness and Latency

15

• 100% discovery in a few seconds • 100% discovery despite mobility

Setup:
• 100 node network
• Simulation parameters based on an Android prototype
• Mobility based on 8 hours of real world human movement observation

Observation: PDD discovers all metadata entries in short time
despite mobility

metadata entries

‘

Data Retrieval Latency

16

• 10’s of seconds for 10-20MB data;

• Retrieve nearest copies in 2-3 hops
(message amount 2-3 times of data size)

• Latency unchanged despite
mobility

Observation: PDR retrieves large size data in short time

M
es

sa
ge

 a
m

o
u

n
t

(M
B

)

‘

Data Caching

17

• In PEC, a node stores a copy of data it forwards,
overhears, or receives
• The node itself may not need the data

• Benefits
• Cached copies can be used to meet consumer needs
• Less latency: nearest copy sent
• More robustness: copies exist after some node

failure/mobility
• Higher bandwidth: different portions of the same data can be

retrieved from multiple copies

• Question: Which node should store a copy of data?

‘

Limitation of Existing Caching Work

• Fairness in workload is not
considered
• Assume all nodes obey one

authority (e.g., owner of the whole
network)

• Some ``best’’ nodes are dictated to
shoulder more caching workload
than others

• Node ability and willingness are not
considered

• In edge computing, no central
authority exists
• devices belong to different owners;

each has limited resources and
wants to control its resource
contribution

18

‘

• Fairness Degree Cost
• The less resources, the higher the cost, thus less willing

to cache more data

• One simple form

• 𝑓 =
𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑢𝑠𝑒𝑑

𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

• Intuition: put data on nodes with more available
resources, thus lower cost

19

Metric for Caching Fairness

‘

Metric for Contention Cost

20

• Wireless contention causes delays in data access
• Collisions due to multiple nodes send simultaneously,

thus loss of messages

• Back-off time, retransmission add to the delay

• Contention induced-delay cost
• Quantify contentions along data delivery path between

nodes 𝑖 and 𝑗

• Proportional to total amount of data messages along the
path

‘

Cache Placement Problem Formulation

21

• Problem: Given a network topology, for each data
chunk, determine which nodes should cache a copy

• Objective: Minimize a weighted sum of fairness and
contention costs

• Placement should achieve fairness (similar loads
among nodes) while minimizing contention (thus
retrieval latency)

• An integer programing problem is formulated
• Map to multiple Connected Facility Location (ConFL)

problems added together
• ConFL problem is an NP-hard problem, thus, our problem is

also NP-hard

‘

Centralized Approximation Algorithm

22

• The algorithm adopts a 6.55-approximation
algorithm of ConFL problem as a subroutine

• It preserves the approximation ratio

• Complexity is 𝑂 𝑁3 , N: number of nodes in the
network

• Limitation: require global information at each node

‘

• Each node needs to decide individually whether or not to
cache
• The centralized approximation algorithm requires global

information, which is difficult to obtain

• Basic idea of distributed algorithm
• Each node asks other nodes within k hops whether they can help

cache the data
• k is a preset parameter, e.g., 2-3

• If a node receives more `yes’ responses, it is more likely to cache
data

• Message overhead: 𝑂(𝑄𝑁 + 𝑁2)
• 𝑄: number of data chunks cached
• 𝑁: number of nodes

23

Extend to Distributed Algorithm

‘

• Compare with two existing algorithms:
• Contention based (Cont): minimizing total contention cost

• Hop count based (Hopc): minimizing total transmitted hops

• Gini coefficient is a common metric to quantify (in)equality in a set
of values
• Value between 0-1: the smaller, the better (fairer)

• Our algorithms (Appx/Dist) achieve much better fairness than two
existing algorithms (Cont/Hopc)

24

Fairness Evaluation

‘

• Contention-induced delay cost on random networks

• Minimum contention cost
• Our algorithms are comparable to Cont, which has minimum

contention cost
• Our algorithms are much lower than Hopc

• Observation: our algorithms achieve minimum contention
cost while greatly improving fairness

25

Contention Cost Evaluation

‘

Secure Data Caching in PEC

26

• A major concern in edge computing: security

• Data transactions and privacy protection in an edge computing
environment often have to involve a trusted third-party

• Blockchain is a promising technology to combat this challenge. It
can be used to ensure data transactions unmodifiable and
undeniable
• A blockchain system consists of a chain of blocks (records). Each

block contains the hash result from its previous block to form a chain

• Blockchain has many security features over a regular distributed
system

• keep complete transaction history

• designed against data modification

• No need for a trusted third-party in the transactions and can
avoid “a central point of failure”

‘

Blockchain on Edge
• Combining blockchain with edge computing can have many

advantages that ensure

• Secure payment: Every transaction is recorded in the blocks,
thus cannot be changed or denied

• Access-control: Data producers can directly manage
subscriptions to deliver for-profit data to consumers

• Privacy: Blockchain can protect the identity of the users

• Challenges

• Limited resources, e.g., storage, computing power

• Resource constraints of edge devices reduce the applicability of
blockchain

• Storing all blocks and data on every edge node is not feasible

• Edge devices have less computing power and energy capacity
compared to traditional blockchain miners

• Directly applying the existing blockchain approach onto edge is

not feasible

27

‘

Blockchain on Edge - Our Approach

• Design a blockchain system suitable for edge

environment, focusing on reducing storage,

latency and energy cost
• Instead directly storing data in blocks, only store

metadata in blocks, and distributively store data and
blocks in key locations for quick access

• Data can be searched through metadata, and can be
accessed from nearby cached nodes

• Blocks are also distributively stored among nodes

• Adopt Proof of Stake (PoS) consensus mechanism to
achieve consensus among nodes to reduce energy cost

• It does not require a compute-intensive process to
achieve consensus as Proof of Work (PoW)
consensus mechanism

28

‘

Blockchain on Edge - System

29

IoT sensors Smart home
devices

We Media creator Users

Data

Payment

Blockchain
System

Se
n

se

D
istrib

u
tively

sto
re b

lo
cks an

d
 d

ata

C
o

m
p

o
se

Payment

D
ata

Distributively store blocks and data

Distributively store
blocks and data

‘

Fair and Efficient Storage Distribution

• After metadata are created and stored in blocks,

data items are then stored onto nodes

distributively
• Metadata contain where the data item is stored and

users can access the data based on the information

• Some nodes in critical locations can be accessed

easily. Such nodes will store data items for other

nodes to access

• Fair (balanced) storage enables more nodes to

participate in caching and avoids overloads
• Nodes with more resources and at key locations are

more likely to be selected to store data and blocks

30

‘

Recent Block Storage

31

• Edge devices, often with wireless transmission and
mobility, may miss newly generated data and blocks

• Recently accessed blocks are more likely to be
requested and more vulnerable to temporary
disconnection of nodes
• If recent blocks are more pervasive in the network, it is

easier to retrieve them

• Nodes are required to cache a certain number of
most recent blocks and replace the blocks using
FIFO
• The number of recent blocks a node caches also depends

on the locations and fairness

‘

Consensus Mechanism (PoW)

32

• A blockchain system needs a consensus mechanism to
achieve distributed consensus on new block generation

• Miners compete to find a certain value, when
hashed together with the whole block, the
hashed value satisfies a certain target value

• Very time and energy consuming process

• Relatively secure, if more than half of nodes in
the system are honest

Proof of Work is a commonly used
consensus mechanism, e.g., Bitcoin

‘

Consensus Mechanism (PoS)

33

• Some cryptocurrencies have adopted this idea, e.g.,
Peercoin

• Creator of the next block is randomly selected based
on the stake, e.g., wealth, age, contributions

• Less time for devices to compute and reach
consensus

• Maybe less secure compared to PoW

• More practical to implement PoS in edge environment

Proof of Stake (PoS) is another commonly used
consensus mechanism

‘

Proof of Stake

34

• Selection rule: If a node contributes more, i.e.,
storing more data and creating more blocks, it will
have a higher probability than others to be the
creator of the next new block

• We reward the node that has contributed more to
the system

‘

Performance under Different Data Generating Rates

35

• 1-3 data items generated per minute, in total 500 blocks generated

• Gini coefficient (left) for date storage (load balance) on nodes and average delivery time
(right) for different network sizes

• For Gini coefficient, it remains very low among 0.15, showing small disparities among node
storage (balanced load)

• Data delivery time grows almost linearly with the number of nodes, and remains almost the
same with different data generating rates

‘

Performance under Different Storage Allocation Strategies

36

• One data item generated per minute, running 500 blocks

• Average delivery time (left) and transmission overhead (right) over different
network sizes

• For delivery time, the proposed data storage is shorter than random storage

• The average transmission amount is less when network size is large.

‘

Architecture Support for PEC

• Edge devices exhibit huge heterogeneity: types/quantities of
device capability/resources vary greatly

• Many edge applications demand both hardware and
software specialization not available on commodity edge
devices

• A modular, composable hardware/software architecture for
customizable edge devices

• Diverse modularized FPGA/software computation
components

• Easily composed electronically and computationally like
Lego pieces

• As a companion to augment a commodity mobile device
like GPU in a multicore processor

‘

Edge Node Architecture: Towards Low-Cost
Modular Specialization

Commodity Mobile Device

FPGA Companion Board

Reconfigurable Electrical Interfaces

Sensors

… …

(e.g., smartphone, tablet,
embedded system)

FPGA Accelerator Library
• data/signal processing
• security

Software Computation

Component Library

Radios

‘

Data Stream Processing System Architecture on
Customizable Edge Devices

• A data processing system runs on
customizable edge devices

• Resource discovery service finds
what hardware/software resources
are available in local and nearby edge
devices

• Composition service creates jobs in
form of connected graphs among
modules, using discovered resources

• Mapping service schedules which
portions of the graph run on which
edge nodes

• PE execution container runs locally
deployed application jobs

• Fault tolerance service handles
resource variability due to
competition/mobility

Commodity Mobile DeviceFPGA Companion Board

Resource
Discovery

Service

Fault
Tolerance

Service

Mapping
Service

Composition
Service

PE Execution Container
Application Jobs

Application

Developer

• Developers compose reusable
hardware/software modules and
components into applications

• One application may require
collaboration and run jobs
among multiple edge devices

‘

Three Types of “Pebble” Nodes

Socket grade
for IoT: Zynq Z-
7007S

Phone grade for
mobile devices:
MicroZed

Tablet grade for vehicles,
edge servers:
Nexys Video Artix-7 FPGA

‘

• Discovery and retrieval at larger scale (e.g., campus)
• Pure peer based is not scalable
• Need the help of more powerful nodes
• Build an infrastructure of more powerful nodes (e.g., static,

more resources). They exchange information to store/serve
metadata and data for others

• Cache management
• Aggressive caching: cache anything overheard

• Reason: storage is relatively abundant while contact is rare, esp.
with mobility (e.g., vehicles)

• How to replace existing data when cache is full
• Incorprate emerging storage devices

• Autonomous, efficient processing under uncertainty
(mobility, connectivity, resources)
• Nodes automatically decide what processing to invoke where,

on what raw data, to produce desired output

41

Future Research Agenda in PEC

‘

• Trust management
• How much trust on whose/what data, on trusted data processed

by less trusted nodes, or merged output from producers of
different trust levels?

• Security and privacy
• How to protect against attacks?

• Attacks are much easier to launch in a loosely coupled environment ,
like PEC, without central authority or definitive boundary

• Such as injecting bogus data, claiming others’ identities, …
• How to confine the propagation scope of sensitive data?

• Incentive mechanisms
• Participation is voluntary. How to compensate contributors

(sensing/processing) appropriately to stimulate collaboration?

• Expressive naming structures
• Adapt semantic web, linked data techniques for more expressive

data descriptions based on content, not format

• Smarter edge: machine learning on edge, 5G and 6G
devices

42

Future Research Agenda in PEC

‘

Summary

43

• A new paradigm of pervasive edge computing is emerging
• Sensing, processing/decision all are done at the edge

• Sharp contrast to cloud computing

• A data centric architecture offers a viable solution
• Data as first class citizens

• Robust and fast data discovery and retrieval

• Fair cache placement

• Time for exciting research: the field is wide open
• Architecture support

• Scalable data discovery, retrieval

• Cache management

• Autonomous processing

• Trust, security and privacy

• Incentives

• Semantic data naming

• Machine learning on edge

• 5G, 6G edge devices

‘

Related Publications

44

• X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang and X. Li, ``Pervasive Edge Data Sharing in
MANET,’’ IEEE INFOCOM/IECCO 2017.

• X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang and X. Li, ``Content Centric Peer Data
Sharing in Pervasive Edge Computing Environments,’’ IEEE ICDCS 2017.

• Y. Huang, X. Song, F. Ye, Y. Yang and X. Li, ``Fair Caching Algorithms for Peer Data
Sharing in Pervasive Edge Computing Environments,’’ IEEE Transactions on Mobile
Computing, pp. 852-864, 2020.

• Y. Huang, J. Zhang, J. Duan, B. Xiao, F. Ye and Y. Yang, Resource Allocation and
Consensus on Edge Blockchain in Pervasive Edge Computing Environments. IEEE
ICDCS 2019, to appear in IEEE Transactions on Mobile Computing.

• X. Yan, F. Ye, Y. Yang and X. Deng, ``Autonomous Compensation Game to Facilitate
Peer Data Exchange in Crowdsensing,’’ to appear in IEEE Transactions on Cloud
Computing.

‘

45

Thank you!

Yuanyuan Yang
www.ece.stonybrook.edu/~yang
yuanyuan.yang@stonybrook.edu

