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Emerging Edge Devices

• Various devices of rich, diverse 
resources
• phones/tablets/wearables, IoT, 

vehicles
• perform sensing, communication, 

storage,  processing operations

• Pervasive, high density 
distribution everywhere by 
opportunistic congregation 
• customers in cafes, passengers at 

boarding gates
• IoT devices in homes, offices, 

shopping malls
• vehicles around city streets
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New Computing Paradigm: Pervasive Edge 
Computing (PEC)

• Promote data as first class citizens

• Data become independent entities decoupled 
from specific devices (e.g., their producers)

• Same/similar data/resources can be provided 
by different devices

• Whichever willing/capable should be used 

• Data become living organisms

• born (gathered by sensors)

• grow (accumulated over space/time)

• morph (transformed in syntax/semantics after 
processing) 

• multiply (information extracted by merging 
different data inputs) 

• propagate (disseminate)

• eventually hibernate/die (archived/eliminated)
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• Data storage /processing and decision all are 
performed at the edge
• Contrast to cloud computing where the edge 

provides only data, but  storage, processing 
and decision are done in the backend
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Advantages of PEC

• Zero barrier
• No infrastructure cost/complexity in deploying, 

maintaining dedicated cloud backend

• Low latency
• No need to communicate with cloud. Processing occurs 

near data, greatly reducing back-and-forth transmission 
delay

• Connectivity independence
• No internet necessary. Communication among peer 

devices even without the Internet 

• Democratic creativity
• No central authority. Devices are free to decide with 

which others to collaborate and how,  enabling flexible 
and diverse applications
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Challenges and Opportunities in PEC

• Challenges
• Heterogeneity: types/quantities of device 

capability/resources vary greatly
• Uncertainty: highly dynamic changes in mobility, 

connectivity, resource availability 
(sensing/computing/storage/communication)

• Diverse ownership: no central authority, mostly 
voluntary sharing

• Opportunities
• Pervasive distribution: devices everywhere
• Existence of more powerful devices: vehicles, main 

powered, to help coordinate peers and perform 
intensive work for others
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Peer Data Sharing (PDS)
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• Discover nearby, opportunistically available 
data, and retrieve them
• avoid blindly requesting

non-existent data

• Peer Data Discovery (PDD)
• Build a “menu” of available data

• Peer Data Retrieval (PDR)
• Retrieve desired data
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Data as Independent Entities
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• Data are self-sufficient entities decoupled from original producers

• widely cached, thus referenced, stored and accessed from 
any willing and capable devices

• Data Descriptors

• When produced, each data item is associated with a data descriptor (a 
metadata entry)

• Metadata is also a kind of data

• Widely cached, possibly separately from respective data

• All such entries together describe what data may exist in the environment 
(the menu)

• One possible form: key-value pairs
• {key: value}

• Example

• Data Type: NO2 sample

• Attributes: time and location of sample

• Namespace: environment monitoring/atmosphere
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• A consumer sends queries to specify desired data and 
retrieve them from other devices

• Queries propagate over the network towards desired data
• Flooded if no routing information for the data exists (e.g., newly 

generated data)
• Otherwise, follow content-centric routing to reach the data 

(explained later in PDR)

• Response
• A provider sends responses to return data that are requested by

queries
• Responses are delivered back to the consumer following the 

reverse path of the query

• Caching
• Intermediate nodes can cache the data for future requests

• Shorter access latency for future requests
• Better robustness to uncertainty (e.g., node mobility, connectivity failure)

9 Data Query, Response and Caching
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Query, Response and Caching
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Peer Data Retrieval (PDR)
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• Once the “menu” of data descriptors is retrieved, the 
consumer decides which data items to “order”

• Two typical scenarios: large and small data
• Scenario 1: a large data item (e.g., a video clip) consisting of 

many small chunks, each cached by multiple devices. 
• Scenario 2: many small data items cached by multiple devices 

(e.g., air pollution samples in certain area).

• We focus on Scenario 1. Scenario 2: follow the same
process as metadata discovery discussed earlier

• Question: How to obtain a copy of each chunk quickly and 
efficiently?
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Two-Phase Data Retrieval
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• Phase 1: Building content-centric routing tables

• Phase 2: Recursive chunk retrieval

• Content-centric routing table
• Each routing entry at a node {data_chunk_ID, m, nID}

tells how far in minimum hops m, via which neighbor(s) 
nID to reach a chunk data_chunk_ID
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Creating Routing Tables
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• Phase 1: Routing Table Creation
• A consumer propagates a query for routing table entries 

of desired data D

• A node M0 with desired chunk i responds: {D-i, 0, -}

• At hop k, node Mk adds a local routing entry: {D-i, k, Mk-1}, 
and continues forwarding this entry towards the 
consumer

• Finally at the consumer: via which neighbor, in how many 
hops to reach the nearest copy for each chunk
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• Phase 2: Recursive Chunk Retrieval
• A consumer sends sub-queries, each requesting a subset of chunks from a 

direct neighbor
• Upon receiving a sub-query, a node

• replies requested chunks it has
• divides remaining chunks into sub-queries, then sends to neighbors with minimum 

hops to those chunks

• Upon receiving replied chunk, a node forwards it back towards the 
consumer

• Chunks are retrieved recursively from all downstream nodes

• Use an algorithm to balance the load among neighbors to shorten 
retrieval latency
• Some neighbors on shortest paths send more chunks, thus more workload
• Objective: minimize the maximum load among all neighbors
• First assign each chunk to a neighbor with smallest hop count
• Heuristic: move a chunk from the neighbor with highest load to the 

neighbor with the 2nd shortest path; repeat until the highest load no longer 
decreases
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Recursive Chunk Retrieval
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Data Discovery Completeness and Latency
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• 100% discovery in a few seconds • 100% discovery despite mobility

Setup:
• 100 node network
• Simulation parameters based on an Android prototype
• Mobility based on 8 hours of real world human movement observation

Observation: PDD discovers all metadata entries in short time 
despite mobility

# metadata entries
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Data Retrieval Latency
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• 10’s of seconds for 10-20MB data; 

• Retrieve nearest copies in 2-3 hops 
(message amount 2-3 times of data size)

• Latency unchanged despite 
mobility

Observation: PDR retrieves large size data in short time
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Data Caching 
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• In PEC, a node stores a copy of data it forwards, 
overhears, or receives
• The node itself may not need the data

• Benefits
• Cached copies can be used to meet consumer needs
• Less latency: nearest copy sent
• More robustness: copies exist after some node 

failure/mobility
• Higher bandwidth: different portions of the same data can be 

retrieved from multiple copies

• Question: Which node should store a copy of data?
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Limitation of Existing Caching Work

• Fairness in workload is not 
considered
• Assume all nodes obey one 

authority (e.g., owner of the whole 
network)

• Some ``best’’ nodes are dictated to 
shoulder more caching workload 
than others

• Node ability and willingness are not 
considered

• In edge computing, no central 
authority exists
• devices belong to different owners; 

each has limited resources and 
wants to control its resource 
contribution
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• Fairness Degree Cost
• The less resources, the higher the cost, thus less willing 

to cache more data

• One simple form

• 𝑓 =
𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑢𝑠𝑒𝑑

𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

• Intuition: put data on nodes with more available 
resources, thus lower cost
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Metric for Caching Fairness
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Metric for Contention Cost
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• Wireless contention causes delays in data access
• Collisions due to multiple nodes send simultaneously, 

thus loss of messages

• Back-off time, retransmission add to the delay

• Contention induced-delay cost
• Quantify contentions along data delivery path between 

nodes 𝑖 and 𝑗

• Proportional to total amount of data messages along the 
path
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Cache Placement Problem Formulation
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• Problem: Given a network topology, for each data 
chunk, determine which nodes should cache a copy

• Objective: Minimize a weighted sum of fairness and 
contention costs

• Placement should achieve fairness (similar loads 
among nodes) while minimizing contention (thus 
retrieval latency)

• An integer programing problem is formulated
• Map to multiple Connected Facility Location (ConFL) 

problems added together
• ConFL problem is an NP-hard problem, thus, our problem is 

also NP-hard
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Centralized Approximation Algorithm
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• The algorithm adopts a 6.55-approximation 
algorithm of ConFL problem as a subroutine

• It preserves the approximation ratio

• Complexity is 𝑂 𝑁3 , N: number of nodes in the 
network

• Limitation: require global information at each node
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• Each node needs to decide individually whether or not to 
cache
• The centralized approximation algorithm requires global 

information, which is difficult to obtain

• Basic idea of distributed algorithm
• Each node asks other nodes within k hops whether they can help 

cache the data
• k is a preset parameter, e.g., 2-3

• If a node receives more `yes’ responses, it is more likely to cache 
data

• Message overhead: 𝑂(𝑄𝑁 + 𝑁2)
• 𝑄: number of data chunks cached
• 𝑁: number of nodes
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Extend to Distributed Algorithm
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• Compare with two existing algorithms:
• Contention based (Cont): minimizing total contention cost

• Hop count based (Hopc): minimizing total transmitted hops

• Gini coefficient is a common metric to quantify (in)equality in a set 
of values
• Value between 0-1: the smaller, the better (fairer) 

• Our algorithms (Appx/Dist) achieve much better fairness than two 
existing algorithms (Cont/Hopc)

24

Fairness Evaluation
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• Contention-induced delay cost on random networks

• Minimum contention cost 
• Our algorithms are comparable to Cont, which has minimum 

contention cost 
• Our algorithms are much lower than Hopc

• Observation: our algorithms achieve minimum contention 
cost while greatly improving fairness

25

Contention Cost Evaluation



‘

Secure Data Caching in PEC
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• A major concern in edge computing: security

• Data transactions and privacy protection in an edge computing 
environment often have to  involve a trusted third-party

• Blockchain is a promising technology to combat this challenge. It 
can be used to ensure data transactions unmodifiable and 
undeniable
• A blockchain system consists of a chain of blocks (records). Each 

block contains the hash result from its previous block to form a chain

• Blockchain has many security features over a regular distributed 
system

• keep complete transaction history 

• designed against data modification 

• No need for a trusted third-party in the transactions and can 
avoid “a central point of failure” 
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Blockchain on Edge
• Combining blockchain with edge computing can have many 

advantages that ensure

• Secure payment: Every transaction is recorded in the blocks, 
thus cannot be changed or denied 

• Access-control: Data producers can directly manage 
subscriptions to deliver for-profit data to consumers 

• Privacy: Blockchain can protect the identity of the users

• Challenges

• Limited resources, e.g., storage, computing power

• Resource constraints of edge devices reduce the applicability of 
blockchain

• Storing all blocks and data on every edge node is not feasible

• Edge devices have less computing power and energy capacity 
compared to traditional blockchain miners

• Directly applying the existing blockchain approach onto edge is 

not feasible
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Blockchain on Edge - Our Approach

• Design a blockchain system suitable for edge 

environment, focusing on reducing storage, 

latency and energy cost
• Instead directly storing data in blocks, only store 

metadata in blocks, and distributively store data and 
blocks in key locations for quick access

• Data can be searched through metadata, and can be 
accessed from nearby cached nodes

• Blocks are also distributively stored among nodes 

• Adopt Proof of Stake (PoS) consensus mechanism to 
achieve consensus among nodes to reduce energy cost

• It does not require a compute-intensive process to 
achieve consensus as Proof of Work (PoW) 
consensus mechanism
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Blockchain on Edge - System
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Fair and Efficient Storage Distribution

• After metadata are created and stored in blocks, 

data items are then stored onto nodes 

distributively
• Metadata contain where the data item is stored and 

users can access the data based on the information

• Some nodes in critical locations can be accessed 

easily. Such nodes will store data items for other 

nodes to access

• Fair (balanced) storage enables more nodes to 

participate in caching and avoids overloads
• Nodes with more resources and at key locations are 

more likely to be selected to store data and blocks
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Recent Block Storage
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• Edge devices, often with wireless transmission and 
mobility, may miss newly generated data and blocks

• Recently accessed blocks are more likely to be 
requested and more vulnerable to temporary 
disconnection of nodes 
• If recent blocks are more pervasive in the network, it is 

easier to retrieve them 

• Nodes are required to cache a certain number of 
most recent blocks and replace the blocks using 
FIFO
• The number of recent blocks a node caches also depends 

on the locations and fairness
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Consensus Mechanism (PoW)
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• A blockchain system needs a consensus mechanism to 
achieve distributed consensus on new block generation

• Miners compete to find a certain value, when 
hashed together with the whole block, the 
hashed value satisfies a certain target value

• Very time and energy consuming process

• Relatively secure, if more than half of nodes in 
the system are honest

Proof of Work is a commonly used 
consensus mechanism, e.g., Bitcoin
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Consensus Mechanism (PoS)
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• Some cryptocurrencies have adopted this idea, e.g., 
Peercoin

• Creator of the next block is randomly selected based 
on the stake, e.g., wealth, age, contributions

• Less time for devices to compute and reach 
consensus

• Maybe less secure compared to PoW

• More practical to implement PoS in edge environment

Proof of Stake (PoS) is another commonly used 
consensus mechanism
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Proof of Stake
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• Selection rule: If a node contributes more, i.e., 
storing more data and creating more blocks, it will 
have a higher probability than others to be the 
creator of the next new block

• We reward the node that has contributed more to 
the system
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Performance under Different Data Generating Rates
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• 1-3 data items generated per minute, in total 500 blocks generated

• Gini coefficient (left) for date storage (load balance) on nodes and average delivery time 
(right) for different network sizes

• For Gini coefficient, it remains very low among 0.15, showing small disparities among node 
storage (balanced load)

• Data delivery time grows almost linearly with the number of nodes, and remains almost the 
same with different data generating rates
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Performance under Different Storage Allocation Strategies 
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• One data item generated per minute, running 500 blocks 

• Average delivery time (left) and transmission overhead (right) over different 
network sizes

• For delivery time, the proposed data storage is shorter than random storage

• The average transmission amount is less when network size is large. 
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Architecture Support for PEC

• Edge devices exhibit huge heterogeneity: types/quantities of 
device capability/resources vary greatly

• Many edge applications demand both hardware and 
software specialization not available on commodity edge 
devices

• A modular, composable hardware/software architecture for 
customizable edge devices

• Diverse modularized FPGA/software computation 
components 

• Easily composed electronically and computationally like 
Lego pieces

• As a companion to augment a commodity mobile device 
like GPU in a multicore processor
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Edge Node Architecture: Towards Low-Cost 
Modular Specialization

Commodity Mobile Device

FPGA Companion Board

Reconfigurable Electrical Interfaces

Sensors

… …

(e.g., smartphone, tablet,
embedded system)

FPGA Accelerator Library
• data/signal processing
• security

Software Computation

Component Library

Radios
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Data Stream Processing System Architecture on 
Customizable Edge Devices

• A data processing system runs on 
customizable edge devices

• Resource discovery service finds 
what hardware/software resources 
are available in local and nearby edge 
devices

• Composition service creates jobs in 
form of connected graphs among 
modules, using discovered resources 

• Mapping service schedules  which 
portions of the graph run on which 
edge nodes

• PE execution container runs locally 
deployed application jobs

• Fault tolerance service handles 
resource variability due to 
competition/mobility

Commodity Mobile DeviceFPGA Companion Board

Resource 
Discovery 

Service

Fault 
Tolerance 

Service

Mapping 
Service

Composition 
Service

PE Execution Container
Application Jobs

Application

Developer

• Developers compose reusable 
hardware/software modules and 
components into applications

• One application may require 
collaboration and run jobs 
among multiple edge devices
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Three Types of “Pebble” Nodes

Socket grade 
for IoT: Zynq Z-
7007S

Phone grade for 
mobile devices: 
MicroZed

Tablet grade for vehicles, 
edge servers:
Nexys Video Artix-7 FPGA
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• Discovery and retrieval at larger scale (e.g., campus)
• Pure peer based is not scalable
• Need the help of more powerful nodes 
• Build an infrastructure of more powerful nodes (e.g., static, 

more resources). They exchange information to store/serve 
metadata and data for others

• Cache management
• Aggressive caching: cache anything overheard

• Reason: storage is relatively abundant while contact is rare, esp. 
with mobility (e.g., vehicles)

• How to replace existing data when cache is full
• Incorprate emerging storage devices

• Autonomous, efficient processing under uncertainty 
(mobility, connectivity, resources)
• Nodes automatically decide what processing to invoke where, 

on what raw data, to produce desired output
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Future Research Agenda in PEC
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• Trust management
• How much trust on whose/what data, on trusted data processed 

by less trusted nodes, or merged output from producers of 
different trust levels?

• Security and privacy
• How to protect against attacks?

• Attacks are much easier to launch in a loosely coupled environment , 
like PEC, without central authority or definitive boundary

• Such as injecting bogus data, claiming others’ identities, …
• How to confine the propagation scope of sensitive data?

• Incentive mechanisms
• Participation is voluntary. How to compensate contributors 

(sensing/processing) appropriately to stimulate collaboration?

• Expressive naming structures
• Adapt semantic web, linked data techniques for more expressive 

data descriptions based on content, not format

• Smarter edge: machine learning on edge, 5G and 6G 
devices
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Future Research Agenda in PEC
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Summary 
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• A new paradigm of pervasive edge computing is emerging
• Sensing, processing/decision all are done at the edge

• Sharp contrast to cloud computing

• A data centric architecture offers a viable solution
• Data as first class citizens

• Robust and fast data discovery and retrieval

• Fair cache placement

• Time for exciting research: the field is wide open
• Architecture support

• Scalable data discovery, retrieval

• Cache management

• Autonomous processing

• Trust, security and privacy

• Incentives

• Semantic data naming

• Machine learning on edge

• 5G, 6G edge devices
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