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What is “RIKEN”?

Name in Japanese:     理化学研究所

 Pronounced as:
 Meaning:

Acronym in Japanese: 理研 (RIKEN)

2

Physics and Chemistry Research Institute
rikagaku kenkyusho
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What is RIKEN-AIP?
RIKEN founded Center for 

Advanced Intelligence Project 
(AIP) in 2016, under Ministry of 
Education, Culture, Sports, 
Science and Technology
(MEXT).

5

Sendai

Nara
Osaka

Kyoto

Fukuoka

Shiga

Tokyo

Tsukuba

In-house GPU servers Open discussion space

Main office located
in the heart of Tokyo

Distributed office
across Japan



AIP’s 5 Missions
Develop next-generation AI technology:
 machine learning & optimization theory, etc.

Accelerate scientific research:
 cancer, material, genomics, etc.

Solve socially critical problems:
 natural disaster, elderly healthcare, etc.

Study of ethical, legal and social issues of AI:
 ethical guidelines, personal data, etc.

Human resource development:
 researchers, engineers, etc.
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Statistics
Diverse research staffs:
 140 employed researchers

(30% international, 20% female)
 290 visiting researchers
 60 domestic students
 140 international interns (total)

Extensive collaboration:
 3 industry collaborative centers
 40+ industry projects
 40+ international collaboration partners
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AIP’s Research Challenges
Machine learning (ML) is the core of current AI:
 Let a computer learn like humans.
 Successful in speech, image, language, ads,…

However, current ML is:
 data-hangry (requiring big labeled data for training),
 black-box (less interpretable).

Our challenges:
 Develop new ML theory to overcome the limitations.
 Explore new ML application beyond current ML.
 Design new ML society with appropriate ethical 

discipline and data-circulation systems.
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1-1) Prostate Cancer Diagnosis

Prostate cancer accounts for
10% of male cancers:
 Automatic diagnosis is desired.

Supervised classification needs
annotated pathological images:
 Increasing doctors’ burden.

Let’s use unsupervised deep
learning for feature extraction.
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Unsupervised Deep Learning

We used 11+ billion unlabeled pathological 
image patches for feature extraction.

 In addition to the standard
Gleason score, novel features
such as interstitium change
were discovered.
Further applications in iPS cells,

leukemia, and breast cancer.
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Yamamoto et al. (Nature Communications 2019)
One of the top 50 most read Nature Communications articles in physics in 2019



1-2) Ghost Cytometry

Classify normal/abnormal cells in the flow:
 However, deep learning inference is too slow.

Structured illumination allows direct feature 
extraction, resulting in real-time classification:
 Found a start-up for industrialization.
 Application in tumors and iPS cells.
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Ota et al. (Science 2018)



1-3) Earthquake Cycle Prediction 
Nankai Trough is located south of Japan, 

expected to cause a big earthquake
in the near future:
 Risk assessment is indispensable.

14

https://www.fnn.jp/articles/-/22389

Nankai Trough 

Expected epicenter



Mathematical Model of Cycles
There is a powerful mathematical model:

Tuning of friction parameters is the key.
 However, there are no enough supervised data.
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Shear stress (pushing force)

Friction force (stopping force)
〇: Friction parameter

Land side plate
Ocean plate

Equation of motion of ocean plate shear stress & land plate friction force



Simulation-based Machine Learning
Alternately perform
 Simulation: Generating artificial data by induction.
 Learning: Training a model with artificial data.

Prediction of
earthquake cycles
is highly improved.
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Hachiya et al. (EGU2019)

𝑉ଵ

𝑉ଶ

ሺ𝑏ଵଵ ൌ 0.011,𝑏ଶଵ ൌ 0.011ሻ

Friction parameters

ሺ𝑏ଵଶ ൌ 0.012,𝑏ଶଶ ൌ 0.011ሻ simulation

Learning

Earthquake cycle data

Prediction error:
6.5 years

Prediction error:
110 years

Prediction error:
125 years

Prediction error:
11 years

Naïve method Our method
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2-1) AI Ethical Guidelines
We have contributed to the discussions on 

privacy, fairness, security, etc.:
 Japanese Society for AI:
Ethical Guidelines (2017).

 Ministry of Internal Affairs and Communications:
AI R&D Guidelines, proposed to OECD (2017),
AI Utilization Guidelines (2019).

 Cabinet Office:
Social Principles of Human-centric AI,

proposed to G20 (2019).
 IEEE:
Ethically Aligned Design (2019).
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2-2) Personal Life Repository
How should personal information be managed?
 Company-based or government-based?

We propose an individual-based system:
 Data subjects control data accessibility,
 Low-cost deployment.

Proof-of-concept:
 Thousands of high schoolers

share their learning records
with the school management
system.
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PLR Cloud
(Google Drive, 
Drpbox, etc.)
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3-1) Understanding Deep Learning
Deep learning:
 Stacking many layers.
 Hard to optimization.
 Works excellently in practice.

We proved its superiority
mathematically:
 Global optimization is possible.

 Better prediction
for high-dimensional data.

 Universal approximator (INN).
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Input Output

Hidden Hidden Hidden

Suzuki & Akiyama (ICLR2021)

Suzuki (NeurIPS2020), Nitanda & Suzuki (ICLR2021),
Suzuki & Nitanda (NeurIPS2021)

Teshima et al. (NeurIPS2020)



3-2) Causal Inference
Correlation vs. Causality:
 The number of Nobel prize winners can be 

predicted by Chocolate consumption.
 But, eating more chocolate does not increase

the number of Nobel prize winners.
Randomized controlled trial:
 Split the subjects

into two group.
 Treat only one

and see what happens.
 Ethically problematic

(e.g., vaccines)
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Messerli (2012)
N

obel Prize

Corr: 
0.79

Chocolate



Causal Inference 
in the Presence of Hidden Cause

 In causal inference, how to handle 
hidden cause is a big challenge!

We developed the first method
to estimate the entire structure
in the presence of hidden cause:
 Speech separation technique is 

employed to separate hidden cause.
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Choco Nobel

GDP Hidden
causeGDP

Maeda & Shimizu (AISTATS2020, UAI2021)
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Imperfect Information Learning Team
Members:

 Gang Niu (Research Scientist): Learning theory
 Shuo Chen (Postdoc): Metric learning
 Jingfeng Zhang (Postdoc): Adversarial learning
 Jiaqi Lyu (Postdoc): Weakly supervised learning
 Many great Visiting Scientists,

Junior Research Associates, Part-Timers,
and Interns over the world!

 Prof. Bo Han (HKBU) was an intern/postdoc:
 Now the most important Visiting Scientist in our team!
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Research at IIL Team

Goal: Develop novel ML theories and 
algorithms that enable reliable learning 
from limited information.
 Label noise: human error, sensor error.
 Insufficient information: weak supervision.
 Data bias: changing environments, privacy.
 Attack: adversarial noise, distribution shift.
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Supervised Classification
Supervised classification with clean labels:

However, real-world labels are noisy
possibly due to human error:
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Class 1 Class 2

Boundary

Class 3

Training error minimization 
is statistically consistent 
and work well in practice.

Class 1

Class 2

Boundary

Class 3

Training error minimization is 
no longer consistent and 
does not work well in practice.



Generic Approaches

Unsupervised outlier removal:
 Substantially difficult
Robust loss, regularization: 
 Not robust enough
We want to go beyond the

limitations of existing approaches!
 Noise transition correction
 Clean sample selection
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Noise Transition Correction
Noise transition matrix    ：
 Clean-to-noisy flipping probability.

Major approaches:
 Loss correction by          to eliminate noise.  
 Classifier adjustment by to simulate noise.

We want to estimate      only from noisy data:
 Use human cognition as a “mask” for     .
 Learn     and a classifier dynamically.
 Decompose     into simpler components.
 Regularize      to be estimable.
 Extension to input-dependent noise          .

30

1 0.1 0.5
0 0.8 0.5
0 0.1 0

Patrini et al. (CVPR2017)

Han et al.
(NeurIPS2018)

Xia et al.
(NeurIPS2019)

Yao et al.
(NeurIPS2020)

Xia et al. (NeurIPS2020), Berthon et al. (ICML2021)

Zhang et al. (ICML2021),
Li et al. (ICML2021)



Clean Sample Selection
Memorization of neural nets:
 Stochastic gradient descent fits

clean data faster, but naïve early
stopping does not work well.

“Co-teaching” with two neural nets:
 Teach small-loss data each other.
 Teach only disagreed data.
 Gradient ascent for large-loss data.

Very robust in experiments:
 Works well even if 50% of

labels are randomly flipped.
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Han et al.
(NeurIPS2018)

Yu et al.
(ICML2019)

Han et al.
(ICML2020)

Validation

Training

Arpit et al. (ICML2017)
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Weakly Supervised Learning
Fully supervised data is expensive to collect.
Weakly supervised data

can be collected easily:
 Ex.) Click prediction in online ads:

It is easy to automatically collect
 Clicked ads (positive),
 Unclicked ads (unlabeled).

Learning only from P and U data
is possible!
 Regard U data as noisy N data and correct the loss.
 Statistically consistent.
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Positive Negative

du Plessis et  al. (NIPS2014, ICML2015, MLJ2017),
Niu et al. (NIPS2016), Kiryo et al. (NIPS2017), Hsieh et al. (ICML2019)

Positive

Unlabeled



Various Extensions
Learning from weakly supervised data is 

possible in many different forms! 

 All are loss-correction based and consistent.
 Any loss, classifier, and optimizer can be used.
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Positive-Unlabeled
Unlabeled-Unlabeled

Similar-Dissimilar

Bao et al. (ICML2018)
Shimada et al. (NeCo2021)

Dan et al. (ECMLPKDD2021)
Cao et al. (ICML2021)

Feng et al. (ICML2021)

du Plessis et  al. (NIPS2014, ICML2015, MLJ2017)
Niu et al. (NIPS2016),, Kiryo et al. (NIPS2017)

Hsieh et al. (ICML2019)

Ishida et al. (NeurIPS2018)
Shinoda et al. (IJCAI2021)

Semi-Supervised

Sakai et al. (ICML2017, ML2018)

du Plessis et al.,(TAAI2013)
Lu et al. (ICLR2019, AISTATS2020)
Charoenphakdee et al. (ICML2019)

Lei et al. (ICML2021)



Multiclass Methods
Labeling patterns in multi-class

problems is extremely painful.
Multi-class weak-labels:
 Complementary labels:

Specify a class that a pattern
does not belong to (“not 1”).

 Partial labels: Specify a subset of classes
that contains the correct one (“1 or 2”).

 Single-class confidence:
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%”) 

Systematic loss correction is possible!
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Class 1
Class 2

BoundaryClass 3

Ishida et al.
(NIPS2017, ICML2019)
Chou et al. (ICML2020)

Feng et al.
(ICML2020, NeurIPS2020)

Lv et al. (ICML2020)

Cao et al. (arXiv2021)



Weakly Supervised Learning 36
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P, N, U, S, D, Pconf,
Nconf, Sconf, Dconf....

Comp, Partial, SCconf…
Different weak information

can be systematically
combined!

Sugiyama, Bao, Ishida, Lu, Sakai & Niu,
Machine Learning from Weak Supervision

MIT Press, 2022.
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Transfer Learning
Training and test data often have 

different distributions, due to
 changing environments,
 sample selection bias (privacy).

Transfer learning (domain adaptation):
 Train a test-domain predictor using

training data from different domains.
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Quiñonero-Candela et al. (MIT Press 2009)



Classical Approach
for Transfer Learning

Two-step adaptation:
1. Importance weight estimation:

2. Weighted predictor training:

However, estimation error in Step 1
is not taken into account in Step 2.
 We want to integrate these two steps!
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Sugiyama & Kawanabe
(MIT Press 2012)



40Joint Weight-Predictor Optimization
Covariate shift: Only input distributions change.

Suppose we are given
 Labeled training data:
 Unlabeled test data:

Minimize a risk upper bound jointly 
w.r.t. weight    and predictor   :

 Theoretical guarantee:

Shimodaira (JSPI2000)

Zhang et al.
(ACML2020, SNCS2021)

: Empirical approximation of 



Dynamic Importance Weighting
General changing distributions:
Suppose we are given
 Labeled training data:
 Labeled test data:

For each mini-batch                                     , 
importance weights are estimated by
matching losses by kernel mean matching:

Extremely simple, but highly powerful!
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Huang et al. (NeurIPS2007)

Fang et al.
(NeurIPS2020)



Mechanism Transfer
 Is transfer learning possible when data 

distributions are seemingly very different?
Yes, if data generation mechanisms are shared:
 Use invertible neural networks (INNs)

to invert the data generation mechanism.
 INNs are universal approximators.
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Teshima et al. 
(ICML2020)

Teshima et al. (NeurIPS2020)

Independent 
components

“Mechanism”

Observed
data
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Challenges in Reliable ML
 Reliability for expectable situations:

 Model the corruption process explicitly
and correct the solution.
 How to handle modeling error?

 Reliability for unexpected situations:
 Consider worst-case robustness (“min-max”).
 How to make it less conservative?

 Include human support (“rejection”).
 How to handle real-time applications?

 Exploring somewhere in the middle
would be practically more useful:
 Use partial knowledge of the corruption process.
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History of AI and Future 45

 Classic AI:
 1960s:

symbolic, logical AI
 1980s:

Expert systems

 Neuro-inspired AI:
 1960s:

1-layer perceptrons
 1980s:

Multilayer perceptrons

 Statistical machine learning:
 2000s: Statistics, Bayes, 

convex optimization, kernels

 Deep learning:
 2010s: Stochastic 

gradient, gigantic 
deep models

 Next-generation AI:
 Integration of elements
 Human-like AI?



Next-Generation AI
 Is Human-like AI ultimate?
 Future AI needs not be autonomous.
 Future AI may learn together with humans.

AI needs to be inclusive
to human society:
 Technology 

X
Human creativity,
culture, and ethics.
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Human
designer

AI
Generative Adversarial Net,

Neural Style Transfer

https://www.fashion-press.net/collections/11006

Fashion show at UTokyo in Mar. 2019
(with Prof. Aihara and Emarie)



Thank You!
多謝！

ありがとう！
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