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What is "RIKEN"?

Name in Japanese: IE{tZE®ZEFT

o

e Pronounced as: rikagaku kenkyusho
e Meaning: Physics and Chemistry Research Institute

Acronym in Japanese: #f (RIKEN)
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What is RIKEN-AIP? >

RIKEN founded Center for Main office located

in the heart of Tokyo

Advanced Intelligence Project
(AIP) in 2016, under Ministry of
Education, Culture, Sports, .

: a2
Science and Technology o
(MEXT). L

Distributed office *i
across Japan

In-house GPU servers




AlP’s 5 Missions

Develop next-generation Al technology:
e machine learning & optimization theory, etc.
Accelerate scientific research:

e cancer, material, genomics, etc.

Solve socially critical problems:
e natural disaster, elderly healthcare, etc.

Study of ethical, legal and social issues of Al:
e ethical guidelines, personal data, etc.

Human resource development:
e researchers, engineers, etc.



Statistics !
As of Apr. 1, 2021

Diverse research staffs:

e 140 employed researchers
(30% international, 20% female)

e 290 visiting researchers
e 60 domestic students
e 140 international interns (total)

Extensive collaboration:
e 3 industry collaborative centers NEC

e 40+ industry projects FOIIsU
. . . TOSHIBA
e 40+ international collaboration partners
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AlIP’s Research Challenges  °

Machine learning (ML) is the core of current Al:
e et a computer learn like humans.
e Successful in speech, image, language, ads,...

However, current ML is:
e data-hangry (requiring big labeled data for training),
e black-box (less interpretable).

Our challenges:
e Develop new ML theory to overcome the limitations.
e Explore new ML application beyond current ML.

e Design new ML society with appropriate ethical
discipline and data-circulation systems.
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1-1) Prostate Cancer Diagnosis "

Prostate cancer accounts for
10% of male cancers:

e Automatic diagnosis is desired.

Supervised classification needs
annotated pathological images:
e Increasing doctors’ burden.

Let’'s use unsupervised deep
learning for feature extraction.

Bl 130




Unsupervised Deep Learning

Yamamoto et al. (Nature Communications 2019)

One of the top 50 most read Nature Communications articles in physics in 2019

We used 11+ billion unlabeled pathological
iImage patches for feature extraction.
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were discovered.

Further applications in iPS cells,-
leukemia, and breast cancer.
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1-2) Ghost Cytometry 13

Structured lllumination

§ . L Ota et al. (Science 2018)
for direct feature extraction based on optofluidics
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Classify normal/abnormal cells in the flow:

e However, deep learning inference is too slow.
Structured illumination allows direct feature
extraction, resulting in real-time classification:
e Found a start-up for industrialization.

e Application in tumors and iPS cells.



1-3) Earthquake Cycle Prediction '

Nankai Trough is located south of Japan,
expected to cause a big earthquake
in the near future:

e Risk assessment is indispensable.

: | | Expected epicenter

Nankai Trough

©Google

https://www.fnn.jp/articles/-/22389



Mathematical Model of Cycles ™

There is a powerful mathematical model:

Equation of motion of ocean plate shear stress & land plate friction force

r:ﬂx ~ Shear stress (pushing force)
</ |\ Ocean plate -4
o o

N
y T = ;K” (7't =4®) - 35—
\’ : Friction force (stopping force) |

U~
N ) =w(©)e O: Friction parameter

ui(6) = ., Hain (52) Hb)n (%) ‘

Tuning of friction parameters is the key.
e However, there are no enough supervised data.



Simulation-based Machine Learning 16

Hachiya et al. (EGU2019)
Alternately perform

e Simulation: Generating artificial data by induction.
e Learning: Training a model with artificial data.
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2-1) Al Ethical Guidelines ¢

We have contributed to the discussions on
privacy, fairness, security, etc.: [T

e Japanese Society for Al:
MEthical Guidelines (2017).

e Ministry of Internal Affairs and Communlcatlons
WAl R&D Guidelines, proposed to OECD (2017),
WAl Utilization Guidelines (2019).
e Cabinet Office:

B Social Principles of Human-centric Al,
proposed to G20 (2019).

ETHICALLY A
e |[EEE: ALIGNED DESIGN <& -
First Edition :

EEthically Aligned Design (2019). [Epssmsiaain s S0
- . OIEEE

#IEEEprinciples2practice




2-2) Personal Life Repository 1

How should personal information be managed?
e Company-based or government-based?

We propose an individual-based system:
e Data subjects control data accessibility,
e Low-cost deployment.

Proof-of-concept:
e Thousands of high schoolers

: : |_enopte |
share their learning records t" GZ&)F;SS:SG /’“’%3
with the school management (etc) -

—1 Drpbox etc.)
system. f
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3-1) Understanding Deep Learning 2’

Deep Iearning: O e %
e Stacking many layers. RO
e Hard to optimization.

e \Works excellently in practice.
We proved its superiority
mathematically:

e Global optimization is possible.

Suzuki & Akiyama (ICLR2021) () — f E(e)dmoo(@) S exp (~AZkn) + i—%nlﬂ—ﬁ

® Better pred|Ct|0n dX, = -V (E(Xt) + %||Xt||§4,K) dt + \/gd&
for high-dimensional data. _

Suzuki (NeurlPS2020), Nitanda & Suzuki (ICLR2021), Rin(F) > n_%_"l

Suzuki & Nitanda (NeurlPS2021) — in H; ,[\HJJ? s |

e Universal approximator (INN). ™" s ez, ™ Ea(rx)

Teshima et al. (NeurlPS2020) Epn [Ewk[\|fwk — f°||%2(PX)|Dn]} < p @ sartl 4 E,



3-2) Causal Inference

Correlation vs. Causality:

e The number of Nobel prize winners can be
predicted by Chocolate consumption.

e But, eating more chocolate does not increase
the number of Nobel prize winners.

Randomized controlled trial:

e Split the subjects
into two group.

e [reat only one
and see what happens.

e Ethically problematic
(e.g., vaccines)

Messerli (2012)
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Figure 1. Correlation between Countries’ ‘ h | t and the Number of Nobel
aureates per 10 Million Population. OCO a e




Causal Inference 23

in the Presence of Hidden Cause

In causal inference, how to handle
hidden cause is a big challenge! (app D Hidder

We developed the first method | choco ==Fp Nobel
to estimate the entire structure
In the presence of hidden cause:

e Speech separation technique is
employed to separate hidden cause.

Maeda & Shimizu (AISTATS2020, UAI2021)
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Imperfect Information Learning Team 2°

Members: fa
e Gang Niu (Research Scientist): Learning theory “
e Shuo Chen (Postdoc): Metric learning
e Jingfeng Zhang (Postdoc): Adversarial learning
e Jiaqi Lyu (Postdoc): Weakly supervised learning

e Many great Visiting Scientists,
Junior Research Associates, Part-Timers,
and Interns over the world!

Prof. Bo Han (HKBU) was an intern/postdoc:
e Now the most important Visiting Scientist in our team!




Research at IIL Team 26

Goal: Develop novel ML theories and
algorithms that enable reliable learning
from limited information.

e Label noise: human error, sensor error.

e Insufficient information: weak supervision.
e Data bias: changing environments, privacy.
e Attack: adversarial noise, distribution shift.
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Supervised Classification = 4°

Supervised classification with clean labels:

Class 1 | ,x Class?2
o
o %, X o X% Training error minimization
(o) . _r .
0" o A Xx Is statistically consistent

o

Boundary

and work well in practice.

However, real-world labels are noisy

| Class 2
possibly due to human error: Co o
Class 1 ¢ p
Tt T _ x % o, X
Training error minimization is o0 °o )
no longer consistent and TN Csoundeny

does not work well in practice.



Generic Approaches 29

Unsupervised outlier removal:
e Substantially difficult

Robust loss, regularization:

e Not robust enough L E=
We want to go beyond the
limitations of existing approaches! | "\ 4

e Noise transition correction
e Clean sample selection




Noise Transition Correction 3¢

Noise transition matrix T T "= [Jlo1]o5
e Clean-to-noisy flipping probability. 0 198105

0 (01] O
MajOr apprOaCheS: Patrini et al. (CVPR2017)
e Loss correction by T~ to eliminate noise.
T
e Classifier adjustment by I" to simulate noise.

We want to estimate 1" only from noisy data:
e Use human cognition as a “mask” for T'. ..o

e Learn T and a classifier dynamically. (NeurPS2019)
e Decompose 1’ into simpler components. urszom,
e Regularize T’ to be estimable. e evL 2021

e Extension to input-dependent noise T'(x).

Xia et al. (NeurlPS2020), Berthon et al. (ICML2021)



Clean Sample Selection 31

Arpit et al. (ICML2017)

1.0] .

Memorization of neural nets:

e Stochastic gradient descent fits
clean data faster, but nalve early

o
o

Accuracy
o
o))

©
>

stopping does not work well. Training ~ — 0

.- Ve y o
\)
'\ . .
w Validation
1
""—\,-"‘v: bty e

A A
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AN \j‘"‘l,mh/ PR AR Y TR

0

“Co-teaching” with two neural nets:
e Teach small-loss data each other. ..re0r)
e [each only disagreed data. (CML2019)

Han et al.

e Gradient ascent for large-loss data. w2

Very robust in experiments:

e Works well even if 50% of
labels are randomly flipped.

20 40 60 80 100
Epoch(s)

______

______
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Weakly Supervised Learning 33

Fully supervised data is expensive to collect.

Weakly supervised data Positive. Negalive
can be collected easily: 0 % | x x*
o

e Ex.) Click prediction inonline ads: o ° | x«
It is easy to automatically collect Positive
B Clicked ads (positive), ho | 7 ¢
B Unclicked ads (unlabeled). \

Learning only from P and U data °g=@!® a
iS pOSSi ble! du Plessis et al. (NIPS2014, ICML2015, MLJ2017),

Niu et al. (NIPS2016), Kiryo et al. (NIPS2017), Hsieh et al. (ICML2019)

e Regard U data as noisy N data and correct the loss.
e Statistically consistent. 0, (1 / \/ﬁ)



Various Extensions 34

Learning from weakly supervised data is
possible in many different forms!

Positive-Unlabeled
0o o
o
On Ool:l 0 g o
OOD o} o l:ln
oo O o
°|:| oo o

du Plessis et al. (NIPS2014, ICML2015, MLJ2017)
Niu et al. (NIPS2016),, Kiryo et al. (NIPS2017)
Hsieh et al. (ICML2019)

Positive-confidence

ol
OO0l

Ishida et al. (NeurlPS2018)
Shinoda et aI (IJCAI2021)

Semi-Supervised

Unlabeled-Unlabeled oo | 9, xg
00 olo
o o o0 o x0
o Ojo o o
o a oo Ol g
0o o ©_oo %o
oo a
ool ® g
o o oo Sakai et al. (ICML2017, ML2018)
o o
0 o og
a [« ] " E e F
o 950 Similar-Dissimilar
gool® g
n\ﬂ -a .
““““ o o Bao et al. (ICML2018)
du Plessis et al.,(TAAI2013) o UU > Shimada et al. (NeC02021)
Lu et al. (ICLR2019, AISTATS2020) Q- a Dan et al. (ECMLPKDD2021)
Charoenphakdee et al. (ICML2019) O Cao et al. (ICML2021)
Lei et al. (ICML2021) ﬂ/n Feng et al. (ICML2021)

e All are loss-correction based and consistent. Op(l/ ‘/ﬁ)
e Any loss, classifier, and optimizer can be used.



Multiclass Methods 39

Labeling patterns in multi-class g Class?
. . assS
problems is extremely painful.

Multi-class weak-labels: |

e Complementary labels: (s e
Specify a class that a pattern Boundary
does not belong to (“not 17).

e Partial labels: Specify a subset of classes o
that contains the correct one ("1 or 27). (V702 newirs2020

e Single-class confidence: ceoetal @rxivzoz1)
One-class data with full confidence
("1 with 60%, 2 with 30%, and 3 with 10%")

Systematic loss correction is possible!  0,(1/va)




Weakly Supervised Learning °

Supervised

: P N, U, S, D, Pconf, +

Semi- Nconf, Sconf, Dconf.... o
supervised Comp, Partial, SCconf... e
Different weak information -

_ can be systematically T_J
Unsupervised combined! o
-

Low Classification accuracy High

Sugiyama, Bao, Ishida, Lu, Sakai & Niu,
Machine Learning from Weak Supervision
MIT Press, 2022.
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Transfer Learning 38

Training and test data often have
different distributions, due to

e changing environments,
e sample selection bias (privacy).

Transfer learning (domain adaptation);

e [rain a test-domain predictor using
training data from different domains.

-0.5¢

DATASET SHIFT IN
MACHINE LEARNING

- Dm [l
. R i k. an
.
i 3 B g by PR o .
[

r_;,.'- _: T e ez g e A b . '=_-.:.' . -. :. = ."l: -

| _ NIPS Workshop 2006 - Whistler b R Mk
NIPS Workshop on Learning when Test and Training Inputs Have : b Pt
Different Distributions, Whistler 2006

Quifionero-Candela et al. (MIT Press 2009) |




Classical Approach 39
for Transfer Learning s

Two-step adaptation: .
1. Importance weight estimation: Sugiyama & Kawanabe

(MIT Press 2012)
_ o~ pte(wa y)
W = ar mlnE D CACS !
gw ptr (2,Y) |: ( ( y) ptr(ma y) >:|

2. Weighted predictor training:

f — arg?ﬂn I/E;j‘ptr(a‘c,y) [ﬁ}(.’L‘, y)ﬁ(f(::c), y)]

However, estimation error in Step 1
IS not taken into account in Step 2.

e \We want to integrate these two steps!



Joint Weight-Predictor Optimization 4°

Covariate shift: Only input distributions change.
ptr(m) ?é pte(m) ptr(y!zc) — pte(y]a:) Shimodaira (JSPI2000)

Suppose we are given

e Labeled training data: {(=!", y")}m, "X

— ~ ptr(way)
e Unlabeled test data: {zleyre K pe ()

Minimize a risk upper bound jointly ..., 22
w.r.t. weight w and predictor f: Ji.(f,w) > Re, (f)°

AN

f =argminmin Jp, (f,w)  Re(f) = Ep, (@ l(f(2),y)]

>0
d - Ete S 1 gtr 2 Ete
Jg : Empirical approximation of Jy

e [heoretical guarantee:
Re, (F) < V2min By, (f) + Op(ng " + i)



Dynamic Importance Weighting *’

General changing distributions: pu(x,y) # pie(2, y)
Suppose we are given

e Labeled training data: {(z, )}, "5 pu(@, )
e Labeled test data: {(25°, ;) e K e, y)
For each mini-batch {(z!", ")}, {(&te, 7i°) 1,
importance weights are estimated by s

matching losses by kernel mean matching:

Huang et al. (NeurlPS2007)

- me(f( z),5i) = — > (&), 75°)

Extremely simple, but highly powerful!



Mechanism Transfer 42

Is transfer learning possible when data
distributions are seemingly very different?

Yes, if data generation mechanisms are shared:

e Use invertible neural networks (INNs) .
to invert the data generation mechanism. (1GML2020)

e INNs are universal approximators.  resnimaetal (eurPsz020)

Independent q1 q2 »++ ({Tar
components . ’ ’ ’
“Mechanism” {} g@ f zf}“

vy nov AT Ao Y
Observed | % oo $o °
data Y ‘ ¥ ‘ Iy | N
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Challenges in Reliable ML

Reliability for expectable situations:

e Model the corruption process explicitly
and correct the solution.
B How to handle modeling error?

Reliability for unexpected situations:

e Consider worst-case robustness (“min-max”).
B How to make it less conservative?

e Include human support (“rejection”).
B How to handle real-time applications?

Exploring somewhere in the middle
would be practically more useful:

e Use partial knowledge of the corruption process.

44



History of Al and Future 45

Classic Al: Neuro-inspired Al:
e 1960s: e 1960s:
symbolic, logical Al 1-layer perceptrons
e 1980s: e 1980s:
Expert systems Multilayer perceptrons

Statistical machine learning:
e 2000s: Statistics, Bayes,
convex optimization, kernels ’
Deep learning:

e 2010s: Stochastic
gradient, gigantic
deep models

Next-generation Al:
e Integration of elements
e Human-like Al?




Next-Generation Al 46

|Is Human-like Al ultimate?
e Future Al needs not be autonomous.
e Future Al may learn together with humans.

Fashion show at UTokyo in Mar. 2019
(with Prof. Aihara and Emarie)

Human

Al
Generative Adversarial Net, .
designer

Neural Style Transfer

Al needs to be inclusive
to human society:

e [echnology
X

Human creativity, H -
I e

Cu Itu re y dan d eth ICS. https://www.fashion-press.net/collections/11 006




Thank You!
% !
HLMES !
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