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4 TB every day

50PB / year 

The Ubiquity of Big Spatial Data and Applications
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Big Spatial Data in Agriculture

CropScape is developed by 
USDA-NASS where farmers 
can see what crops are 
growing where and how much. 
CropScape is also used for 
food security, land-cover 
change and pesticide control: 
https://nassgeodata.gmu.edu/C
ropScape/

EarthStat serves geographic data 
sets that help solve the grand 
challenge of feeding a growing 
global population while reducing 
agriculture’s impact on the 
environment.
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Big Spatial Data in Transportation
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Big Spatial Data in Polar Regions

Researchers at i-HARP are investigating 
novel data science techniques including deep 
generative adversarial networks, graph 
neural networks, meta learning, hybrid 
networks, physics-informed machine 
learning, causal artificial intelligence, data 
assimilation, spatio-temporal deep learning, 
and scalable algorithms.

The HDR Institute aims to 
harness massive 

heterogeneous, noisy, and 
discontinuous data in space 
and time and integrate data 
with numerical and physical 

models
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A. Eldawy, M. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek, S. Ghani. 
"SHAHED: A MapReduce-based System for Querying and 
Visualizing Spatio-temporal Satellite Data". ICDE 2015

Big Spatial Data for …..
Remote 

Sensing

Telco 

Data

C. Costa, G. Chatzimilioudis, D. 
Zeinalipour-Yazti, M. Mokbel:
Efficient Exploration of Telco Big 
Data with Compression and 
Decaying. ICDE 2017: 1332-1343

72 months × 14 Billion 
points/month = 1 Trillion points

. . . . . . 

https://lpdaac.usgs.gov
LP DAAC archive exceeds 1PB
5 Trillion points Temperature data
Vegetation data at 250m2 
resolution (16 times larger) 
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“Machine learning is a core, 
transformative way by which 
we’re rethinking everything 
we’re doing.” 
-Google CEO Sundar Pichai

Meanwhile,  the Rise of Machine Learning
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Machine Learning meets Big Spatial Data

ML
Fundamental 
Algorithms

Applications

Non-Spatial

Non-Spatial

Spatial

Spatial
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Knowledge Base 
Construction System

Person 1 Person 2

Barack Michelle

Joe Katy

Joe Lily

Spouses 
KB

Knowledge Base Rules

Relations 
Extraction

tables, relations of facts

Factual Scores 
Inference

NELL StatSnowBall

Google Vault

Fight Human Trafficking
Crime Investigation

Probabilistic

Confidence

0.85

0.52

0.46

Probabilistic Knowledge Base Construction
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Crimes

Education

P1: City X has high crime rate
P2: Cities X&Y have same education level

Rule: P1&P2  Y has high crime rate

Rochester

St. Paul
Minneapolis

Eagan

DeepDive with Spatial Data …

Inference 
Rules

Data

Result

Crime rates in Minnesota

City Confidence

St. Paul 0.5

Eagan 0.5

Rochester 0.5

City
Minneapolis
St. Paul
Eagan
Rochester

C
1
?

?
?

E
0.7
0.7
0.7
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Crimes

Education

P1: City X has high crime rate
P2: Cities X&Y have same education level
P3: Cities X&Y are within 80 miles

Rule: P1&P2  Y has high crime rate
Rule: P1&P2&P3  Y has high crime rate

Rochester

St. Paul
Minneapolis

Eagan

Inference 
Rules

Data

Result
City Confidence

St. Paul 0.5 0.7

Eagan 0.5 0.7

Rochester 0.5 0

City
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St. Paul
Eagan
Rochester

C
1
?

?
?

E
0.7
0.7
0.7
0.7

DeepDive with Spatial Data …
Crime rates in Minnesota
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Crimes

Education

P1: City X has high crime rate
P2: Cities X&Y have same education level
P3: Cities X&Y are within 80 miles

Rule: P1&P2  Y has high crime rate
Rule: P1&P2&P3  Y has high crime rate

Rochester

St. Paul
Minneapolis

Eagan

Inference 
Rules

Data

Result
City Confidence

St. Paul 0.5 0.7

Eagan 0.5 0.7

Rochester 0.5 0

City
Minneapolis
St. Paul
Eagan
Rochester

C
1
?

?
?

E
0.7
0.7
0.7
0.7

P1: County X has high Ebola infection rate
P2: Counties X&Y have same sanitation level

Rule: P1&P2  Y has high infection rate

Ebola infection rates in Liberia
Infections

Sanitation

County
Montserrado
Margibi
Bong
Gbarpolu

I
1
?

?
?

S
0.6
0.6
0.6
0.6

City Confidence

Margibi 0.54

Bong 0.52

Gbarpolu 0.63

DeepDive with Spatial Data …
Crime rates in Minnesota



13Machine Learning for Big Spatial Data and Applications

Crimes

Education

P1: City X has high crime rate
P2: Cities X&Y have same education level
P3: Cities X&Y are within 80 miles

Rule: P1&P2  Y has high crime rate
Rule: P1&P2&P3  Y has high crime rate

Rochester

St. Paul
Minneapolis

Eagan

Inference 
Rules

Data

Result
City Confidence

St. Paul 0.5 0.7

Eagan 0.5 0.7

Rochester 0.5 0

City
Minneapolis
St. Paul
Eagan
Rochester

C
1
?

?
?

E
0.7
0.7
0.7
0.7

P1: County X has high Ebola infection rate
P2: Counties X&Y have same sanitation level
P3: Counties X&Y are within 150 miles

Rule: P1&P2  Y has high infection rate
Rule: P1&P2&P3  Y has high infection rate

Ebola infection rates in Liberia
Infections

Sanitation

County
Montserrado
Margibi
Bong
Gbarpolu

I
1
?

?
?

S
0.6
0.6
0.6
0.6

City Confidence

Margibi 0.54 0.51

Bong 0.52 0.45

Gbarpolu 0.63 0.06

DeepDive with Spatial Data …
Crime rates in Minnesota
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Crimes

Education

P1: City X has high crime rate
P2: Cities X&Y have same education level
P3: Cities X&Y are within 80 miles
P3: The closer Y&X the higher Y crime rate

Rule: P1&P2  Y has high crime rate
Rule: P1&P2&P3  Y has high crime rate
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Minneapolis
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P1: County X has high Ebola infection rate
P2: Counties X&Y have same sanitation level
P3: Counties X&Y are within 150 miles
P3: The closer Y&X the higher Y infect rate

Rule: P1&P2  Y has high infection rate
Rule: P1&P2&P3  Y has high infection rate

Ebola infection rates in Liberia
Infections
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Gbarpolu 0.63 0.06

DeepDive with Spatial Data …
Crime rates in Minnesota
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Where Is the Problem?

■ DeepDive is built on top of Markov Logic Networks (MLN)
 MLN is designed for binary logic only

 E.g., bitwise-AND, bitwise-OR, and imply

■ MLN is not spatially- aware
 It can not interpret the gradual semantics of spatial predicates

 E.g., P3: The closer Y&X the higher Y infect rate

Need to build Spatial Markov Logic Networks (SMLN), 
a full-fledged MLN framework with a native support 

for spatial data and applications
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Need experts and highly-trained scientists, 
specially for deep learning

Markov Logic Networks (MLN)

 MLN is an end-to-end ML solution
 Covers wide range of ML problems
 Thousands of lines of ML code can be 

done in few MLN formulas

Markov Logic 
Network (MLN)

Rule weightsRules as MLN 
formulas

Scalable RDBMS-based 
MLN System 
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MLN Architecture

Language
Inference

Grounding

Propositional 
Logic Language

In-DBMS Factor 
Graph 

Construction

Gibbs Sampling 
Algorithm

In-memory 
Factor Graph 

Index

Applications 
(e.g., DeepDive, … )

Compiled Rules

Configs

Input and 
Supervision Data

Factor 
Graph

Read / 
Update

Application 
Developer

System 
Admin

Learning

Gradient 
Descent 

Optimization

Application 
Rules

Inferred Variables’ 
Values

Factor Graph 
Variables

Inference 
Output

Inference 
Iterations

Learned Correlations’ 
Weights

Factor Graph 
Correlations
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Spatial MLN Architecture

Language
Inference

Grounding

DDlog Language 
with Spatial
Extensions

In-DBMS Spatial
Factor Graph 
Construction

In-memory 
Spatial Factor 
Graph Index

In-memory 
Spatial Factor 
Graph Index

Applications 
(e.g., Sya, Flash, … )

Compiled Rules

Configs

Input and 
Supervision Data

Factor 
Graph

Read / 
Update

Application 
Developer

System 
Admin

Learning

Spatial Gradient 
Descent 

Optimization

Application 
Rules

Inferred Variables’ 
Values

Factor Graph 
Variables

Inference 
Output

Inference 
Iterations

Learned Correlations’ 
Weights

Factor Graph 
Correlations
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SyaSya

Crimes

Education

P1: City X has high crime rate
P2: Cities X&Y have same education level
P3: Cities X&Y are within 80 miles
P3: The closer Y&X the higher Y crime rate

Rule: P1&P2  Y has high crime rate
Rule: P1&P2&P3  Y has high crime rate

Rochester

St. Paul
Minneapolis

Eagan

Sya

Inference 
Rules

Data

Result

Crime rates in Minnesota

City Confidence

St. Paul 0.5 0.7 0.9

Eagan 0.5 0.7 0.7

Rochester 0.5 0 0.3

City
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St. Paul
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Rochester

C
1
?

?
?

R
0.7
0.7
0.7
0.7

P1: County X has high Ebola infection rate
P2: Counties X&Y have same sanitation level
P3: Counties X&Y are within 150 miles
P3: The closer Y&X the higher Y infect rate

Rule: P1&P2  Y has high infection rate
Rule: P1&P2&P3  Y has high infection rate

Ebola infection rates in Liberia
Infections

Sanitation

County
Montserrado
Margibi
Bong
Gbarpolu

I
1
?

?
?

S
0.6
0.6
0.6
0.6

City Confidence

Margibi 0.54 0.51 0.76

Bong 0.52 0.45 0.53

Gbarpolu 0.63 0.06 0.22
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Machine Learning meets Big Spatial Data

ML
Fundamental 
Algorithms

Applications

Non-Spatial

Non-Spatial

Spatial

Spatial
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Spatial MLN Architecture

Language
Inference

Grounding

DDlog Language 
with Spatial
Extensions

In-DBMS Spatial
Factor Graph 
Construction

In-memory 
Spatial Factor 
Graph Index

In-memory 
Spatial Factor 
Graph Index

Applications 
(e.g., Sya, Flash, … )

Compiled Rules

Configs

Input and 
Supervision Data

Factor 
Graph

Read / 
Update

Application 
Developer

System 
Admin

Learning

Spatial Gradient 
Descent 

Optimization

Application 
Rules

Inferred Variables’ 
Values

Factor Graph 
Variables

Inference 
Output

Inference 
Iterations

Learned Correlations’ 
Weights

Factor Graph 
Correlations
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■ Find whether a spatial phenomenon exists or not, based on neighbor 
values and features

Birds Migration

Crimes Distribution Missing value
Neighbor

values

Features

Regression Parameters

Land Cover

Weather Prediction 11

0 11

0 0

1

1

1

0

1

0

1

l1

l5

l9

l13

l2

l6

l10

l14

l3

l7

l11

l15

l4

l8

l12

l16

(x1 = 0, x2 = 1) (x1 = 1, x2 = 1)

(x1 = 1, x2 = 0)

0

Features Phenomenon 
value

Learning regression parameters for 80K 
cells takes more than one day 

Spatial (Autologisitc) Regression
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Spatial Regression 

as SMLN Problem

Markov Logic 
Network (MLN)

Rule weightsRules as MLN 
formulas

Rule weights = 

Regression 
Parameters

SMLN 
Engine

SMLN 
Transformation

SMLN Rules
Regression 

Equation

SMLN Rules
[Z1 ^ X1, ß1]

[Z1 ^ Z2, η]

[Z1 ^ Z3, η]
[Z2 ^ X1, ß1]

[Z2 ^ Z4, η]

[Z2 ^ Z5, η]
[Z3 ^ X1, ß1]

[Z3 ^ Z4, η]

…….

SMLN Rules

SMLN 
Engine

ß1 , η
SMLN 

Transformation

Theoretical proof of the 
Autologistic Regression-
SMLN equivalence is in 

the paper
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■ Prediction and feature variables are multinomial (i.e., categorical)
 Domain values are predefined values (e.g., {0, 1, 2})
 Represent each multinomial variable with a set of binary variables

Multinomial Autologistic Regression

Pivot
Prediction Feature
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At least three orders of magnitude performance gain, while 
accuracy is almost the same.
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Spatial Probabilistic Graphical Modeling (SPGM)

Public Health Monitoring Geo-tagged AdsDisaster Analysis Crime Analysis

■ Performing uncertain (i.e., prob.) predictions over spatial data
 Classical ML approaches (e.g., regression) ignore the probabilistic relationships 

■ Representing the world as a collection of random variables with joint 
probabilistic distribution 
 Tasks: learning the distribution, and inferring unknown variables via the distribution

Spatial Bayesian Network (SBN)

P2P1

P4P3

F1 F2

F3 F4

Spatial Markov Random Field (SMRF)

P2P1

P4P3

O1 O2

O3 O4

Spatial Hidden Markov Model (SHMM)

P2P1

P4P3

F1 F2

F3 F4

C1
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MLN Rules

SMLN for SPGM
■ Generates an equivalent set of weighted rules containing logical 

predicates for any SPGM input
 Weights represent the original SPGM parameters
 Rules follow the syntax of the DDlog logic programming framework 

[P1 ^ F1, ß1]

[P1 ^ P2, η]

[P1 ^ P3, η]
[P2 ^ F2, ß1]

[P2 ^ P4, η]

…….

MLN Rules
[O1 P1, b]

[P1 P2, a]

[O2 P2, b]
[P2 P3, a]

[O3 P3, b]

…….

MLN Rules
[!P1 v !F1 v !C1]

[!P3 v !P1 v !F3 v !C1]

[!P2 v !F2 v !C1]
[!P4 v !P2 v !F4 v !C1]

[!D1 v !F1]

…….

P2P1

P4P3

F1 F2

F3 F4

Spatial Markov Random Field (SMRF)

P2P1

P4P3

O1 O2

O3 O4

Spatial Hidden Markov Model (SHMM)

P2P1

P4P3

F1 F2

F3 F4

C1

Spatial Bayesian Network (SBN)
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Machine Learning meets Big Spatial Data

ML
Fundamental 
Algorithms

Applications

Non-Spatial

Non-Spatial

Spatial

Spatial

Routing
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Destination

Route

Routing Algorithm
Source

Routing..

Map

Precomputed 
Routes
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Destination

Route
Source

Map

Routing Algorithm

Precomputed 
Routes

Topology

Metadata

Path

Estimated Time of Arrival (ETA)

Routing..
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QARTA: An ML-based System for Accurate Map 
Services 
■Map-Centric:

QARTA learns
its own map in 
terms of 
topology and 
metadata

■Query 
Calibration: 
QARTA learns
the error 
margins of 
various 
algorithms and 
use it to 
calibrate its 
answer
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QARTA: Why..??
■ Problem came up from the 

Taxi company working in 
Qatar

Raya Daily (Sept. 8, 2020), 20

Too much construction 
and road changes  in 
town (in preparation to 
FIFA 2022)

Commercial maps cannot 
cope with such changes 
in road networks, and are 
not cheap

CACM, April 2021
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https://www.traffictechnologytoday.com/news/mapping/poor-maps-costing-delivery-companies-us6bn-annually.html
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Edge Weight Inference: Who is doing it? 
■ Traffic departments: Loop detectors or plate recognition

■ Commercial Maps: Cell phone data
Edge Weights are considered as proprietary 

information, not to be shared
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■ Input: Trips (Pickup time/location, Drop off time/location)

w1

w2

w10

w9

w8

w7

w6

w3

w4

w5 w13

w12

w11

A

B
C

D

H
E

I
F

J
G

(A, F, 15)  w2 + w5 + w6 = 15

(B, H, 28)  w3 + w7 + w8 + w9 + w11 = 28

(A, I, 19)  w1 + w3 + w7 + w8 + w9 = 19
…

Edge Weight Inference in QARTA:

■ Objective: Given a set of edges, 
each with length le and unit length 
weight We, a set of trips T, each with 
a path Pt, find We that minimize:

�
𝑡𝑡𝜖𝜖𝜖𝜖

�
𝑒𝑒𝜖𝜖𝜖𝜖𝑡𝑡

𝑊𝑊𝑒𝑒𝑙𝑙𝑒𝑒 − 𝛿𝛿𝑡𝑡

2

X 
equations 

in Y 
unknowns

Ridge 
Regression 

Analysis Edge 
weights 

per 
granularityTemporal 

Granularity

■ Challenges:
 A direct solution may result in zero or 

negative weights
 Scalability is a major issue: Hundreds 

of thousands of edges with millions of 
trajectories

 Over-fitting for unreliable edges
 Need to accommodate for a fine 

granularity (e.g., 168 hours per week)
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■ After several tuning steps: (Details in the paper)

Tuning Steps

X` equations in 
Y` unknowns Ridge 

Regression 
Analysis

X equations in 
Y unknowns

Edge weights 
per granularity

Granularity

10K equations in 
500K unknowns

1K equations in 
5K unknowns

Hour

Edge weights 
per hour

Edge Weight Inference in QARTA

■ Objective: 

�
𝑡𝑡𝜖𝜖𝜖𝜖

�
𝑔𝑔:𝜖𝜖𝑡𝑡∩𝐻𝐻𝑔𝑔≠∅

𝑊𝑊𝑔𝑔𝐿𝐿𝑔𝑔 + 𝑊𝑊0 �
𝑒𝑒𝜖𝜖 (𝜖𝜖𝑡𝑡\𝐻𝐻)

𝑙𝑙𝑒𝑒 − 𝛿𝛿𝑡𝑡
2

+ 𝛼𝛼�
𝑔𝑔

𝑊𝑊𝑔𝑔 − 𝜎𝜎 2

𝐿𝐿𝑔𝑔 = �
𝑒𝑒𝜖𝜖 𝐻𝐻𝑔𝑔

𝑙𝑙𝑒𝑒

Average 
speed

Regularization 
strength



37Machine Learning for Big Spatial Data and Applications

■ The accuracy of query answers heavily 
rely on Estimated time of Arrival 

Estimated Time of Arrival (ETA)

■ The accuracy of the estimation 
depends on the accuracy of the 
underlying map, time of the day, and 
various factors

Idea: Can we study the error patterns of each algorithm 
under various context, and use to adjust the query answer.

OSRM Google Maps
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■ Trip: (Pickup time/location, Drop off time/location, 𝛿𝛿)
 𝛿𝛿 is the difference between actual and estimated time of the trip

Model Building

■ Features in V that impact 𝛿𝛿
 Spatial Zoning

 Origin
 Destination

 Temporal Zoning
 Pickup time
 Drop off time

 Trip Characteristics
 Trip distance
 Trip duration

Trip Data
( V, 𝛿𝛿 ) 

Training 
Data

Feature 
Extraction

Feature 
Vector V Gradient 

Boosting
Regressor

Model M that 
maps V to 𝛿𝛿

■ A model M will be built for each 
ETA algorithm and driving modality

Algorithm Modality Model
OSRM Vehicles M1

OSRM Motorbikes M2

. . . . . . . . .
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Query Calibration in QARTA
■ Shortest Path queries

Origin, 
Destination, 
Start time

Route & ETA

𝛿𝛿 +Feature 
Extraction

Algorithm Modality Model

OSRM Vehicles M1

OSRM Motorbike M2

. . . . . . . . .

Feature Vector 
V

Shortest Path 
Algorithm

Route & 
ETA + 𝛿𝛿

■ Range and kNN queries

Answer 
+ETA

Range / kNN
query processor

Origin, 
Distance 

or K

Algorithm Modality Model

OSRM Vehicles M1

OSRM Motorbike M2

. . . . . . . . .

Answer +ETA
Feature Extraction

Feature Extraction

Feature Extraction

…

𝑉𝑉

𝑉𝑉

𝑉𝑉

……

Feedback
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QARTA in Deployment

■ QARTA receives:
 ~235𝐾𝐾 daily API calls
 ~1 𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀 daily GPS tracks

QARTA is deployed in all Taxis in Qatar ~4𝐾𝐾vehicles

A local food delivery company ~3𝐾𝐾motorbiks

I’m here!

Taxi DispatchingFare estimation

Routing

■ APIs & Services:
 In-traffic routes 
 Travel time estimation
 Complex route planning
 OD matrices
 Search & addresses Link: https://qarta.io
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QARTA vs Other Map Services: Shortest Path Query

■ Q-Map: Runs QARTA Map 
Making layer without any 
calibration
 OSRM on QARTA map

■ Q-Calib: Runs QARTA 
calibration without Map 
Making layer
 Calibrating OSRM engine
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Summary:

ML
Fundamental 
Algorithms

Applications

Non-Spatial

Non-Spatial

Spatial

Spatial

Routing
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Machine Learning meets Big Spatial Data

Big 
Spatial 
Data

Machine 
Learning

PrivacyETHicS

PoliciES
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