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The Ubiquity of Big Spatial Data and Applications
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Big Spatial Data in Agriculture
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Spatial Data and Precision Agricuit

Spatial Data and Precision Agriculture

Precision Agriculture is a methodology of farm management that relies on data, and data analysis to support the
farmer's decision-making process to decrease inputs.

The origin of Precision Agriculture begins with researchers collecting soil samples, and using spatial statistics
methods to determine the different soil types in a field. From this analysis, the researchers developed soil maps
Farms were early adopters of both GPS and Geographic Information Systems (GIS) technologies. As civilian GPS
became more accurate, farms started to utilize this technology to increase the accuracy of operational spatial
data. Collecting spatial data from equipment and sensors that allowed farms to pinpoint the high yield areas. Also,
using GPS data to determine where to increase or decrease pesticides, fertilizers use and irrigation.
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Agriculture Technology: How GIS Can Help You
Win the Farm

By: GIsGeography = Last Updated: August 4, 2021

Agriculture Technology from Location
Today's farmers use sophisticated agriculture technology because they can save time and

money.

Because crops are location based, this makes Geographic Information Systems (GIS) an
EXTREMELY relevant tool for farmers.

For example, farmers use precision GPS on the field to save fertilizer. Also, satellites and drones
collect vegetation, topography, and weather information from the sky.
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CropScape is developed by s i
USDA-NASS where farmers
can see what crops are :
growing where and how much.
CropScape is also used for
food security, land-cover
change and pesticide control: 2
https://nassgeodata.gmu.edu/C = =:
ropScape/

LandQ"2: A MapReduce-Based System for Processing
Arable Land Quality Big Data

by @ Xiaochuang Yao ' & ©, () Mohamed F. Mokbel 2, { ! Sijing Ye 3, (! Guoging Li !, €) Louai Alarabi 2
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3 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
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@ carTHSTAT

EarthStat serves geographic data
sets that help solve the grand
challenge of feeding a growing
global population while reducing
agriculture’s impact on the
environment.

ropScape - Cropland Data Layer
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Big Spatial Data in Transportation
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ARAB WORLD SPECIAL SECTION: HOT TOPICS

Find My Friends By Sofiane Abbar, Rade Stanojevic, Shadab Mustafa, Mohamed Mokbel
Communications of the ACM, April 2021, Vol. 64 No. 4, Pages 67-68
10.1145/3447731
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Smart City Transportation System

PRACTICE

Home / Magazine Archive / April 2021 (Vol. 64, No. 4) / Traffic Routing in the Ever-Changing City of Doha / Full Text

10, Qatar was announced t
as time for celebrating the
Zastern country to organize the tournament.

ation of Qatar then (2.8M today) never

satellite cities, and an astonishing 4,300km of new roads, which

tripled the size of the road network in only five years.?
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Traffic Routing in the Ever-Changing City of Doha




Big Spatial Data in Polar Regions=

:
@ National Science Foundation . . @
9 ‘ " WHERE DISCOVERIES BEGIN

RESEARCH AREAS FUNDING AWARDS DOCUMENT LIBRARY NEWS ABOUT NSF

® The HDR Institute aims to
ﬁlv[v):cm:tsittr;::e?I:Il\ll!iz-silarnessing Data and Model Revolution in the Polar Regions @ COLLEGE h t harness maSS!ve d
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Researchers at i-HARP are investigating
novel data science techniques including deep
generative adversarial networks, graph
neural networks, meta learning, hybrid
networks, physics-informed machine
learning, causal artificial intelligence, data
assimilation, spatio-temporal deep learning,
and scalable algorithms.
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Big Spatial Data for .....

ian-2009 ﬂ

Remote
Sensing oo
S

72 months x 14 Billion

points/month = 1 Trillion points

Telco
Data

SMART
cITy
ENABLERS

https://lpdaac.usgs.gov GISINNOV;;})E,:\: |
LP DAAC archive exceeds 1PB CENTER
5 Trillion points Temperature data

Vegetation data at 250m2
resolution (16 times larger) .
A. Eldawy, M. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek, S. Ghani.

"SHAHED: A MapReduce-based System for Querying and
Visualizing Spatio-temporal Satellite Data". ICDE 2015

_____ collect___[TELCO. C. Costa, G. Chatzimilioudis, D.
---- === Zeinalipour-Yazti, M. Mokbel:
Analytics Efficient Exploration of Telco Big
fwﬁ?;@@ Data with Compression and
| i,,.'n. || | Decaying. ICDE 2017: 1332-1343
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Meanwhile, the Rise of Machine Learning

&n SmartDataCollective

The Rise of Machine Learning and
Al is Improving Lives in 2018

Take a dive into how Machine Learning and Al have
impacted the way we live our daily lives.
Bhupinder Kour

3 al _w.:@
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The Rise of Machine Learning

Let's take a look at a brief article that explores machine learning and how the recent surge
of data has empowered & field of computer science.

. t
PHYS & -ORG Nanotechnology ~ Prysics ~ I
The rise of machine Iearnlng in astronomy|

eptember 4, 2018, Partic

septem

[The SKA will have over 2000 radio dishes and 2 million low-frequency antennas once finished
When mapping the universe, it pays to have some smart programming. Experts share how machine leaming i
changing the future of astronomy.

Rise Of The Machines: The
Future Of Data Science And
Machine Learning

When smartphones, cars, and other devices learn,
businesses and people win.

By Tom Haunert

hy machine Iearnmg will see explosive growth over ook
e next 2 years

Macy Bayern i P in Arificial Intelligence
ber 18
hile current production of machine learning projects are low, 96% of
fnpanies expect them to increase in the next couple years.

‘Web Develo p ment ~
—

The rise of machine learning in the investment
industry

By Notasha Mathur - Febriary 15,2013 -40am @34 WO

he investment industry has evolved dramatically over the [ast several decades and

BE A NIK SECURITYee

The Rise of Machine Learning in
Cybersecurity

How the critical capability of machine
learning can help prevent today's most
sophisticated attacks
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The rise of machine learning

By Adrian Pennington | 25 September 2017

AT is an increasingly important tool for media companies, helping to automate
epetitive tasks and free up staff to focus on delivering quality content.

iuch of what is now referred to as Artificial Intelligence (AI) and Machine Learning (ML) s, in
Feality, just advanced image or metadata analysis. Rather than ‘learning’ by themselves, machine
heed to be trained in detail to get good results and will only get better through additional training.
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“Machine learning is a core,
transformative way by which
we're rethinking everything
we're doing.”

Il -Google CEO Sundar Pichai
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Machine Learning meets Big Spatial Data

Applications
A

Spatial

digitalhealth

N o n 'S p at i a I news @ networks @ intelligence ©
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MACHINE LEARNING Knowledge Base

Non-Spatial
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Knowledge Base Construction

Probabilistic
Knowledge Base
Construction System

tables, relations of facts

)

Relations
Extraction
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Q\% Factual Scores p Barack  Michelle
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Knowledge Base Rules
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Fight Human Trafficking
NELL SystemT StatSnowBall . e

Crime Investigation

dp DeepDive appleinsider
i X tQ) | SCIENTIFIC N EB Apple acquires "dark data" specialist
DELIVERING COMPETITIVE ADYANTAGE ' Ve I_attlce Data for 200'\/'
g CI\I\JFOI‘I)QSBE]. B o $
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DeepDive with Spatial Data ...

Crime rates in Minnesota

Crimes

City C|E )

Minneapolis| 1 [0.7

St. Paul ? 10.7 e,
Eagan ? 0.7

Rochester | ? | 0.7 &

Education

Pl: City X has high crime rate
P2: Cities X&Y have same education level

Inference

Rule: P1&P2 =» Y has high crime rate Rules

<
«dD DeepDive

Result
St. Paul 0.5
Eagan 0.5
Rochester 0.5
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DeepDive with Spatial Data ...

Crime rates in Minnesota

Crimes

City C|E )

Minneapolis| 1 [0.7

St. Paul ? 10.7 e,
Eagan ? 0.7

Rochester | ? | 0.7 &

Education

Pl: City X has high crime rate
P2: Cities X&Y have same education level
P3: Cities X&Y are within 80 miles

Inference
Rules

Rule: P1&P2&P3 =» Y has high crime rate

<
«dD DeepDive

Result
St. Paul —0:5— 0.7
Eagan —05— 0.7

Rochester 05— 0

AR UnivERsITY OF MINNESOTA Machine Learning for Big Spatial Data and Applications



e
DeepDive with Spatial Data ...

Crime rates in Minnesota Ebola infection rates in Liberia

Crimes Infections

C Ity CI|E Cou nty I S Gharpolu

Minneapolis| 1 [0.7 Q Montserradq 1 (0.6 Q
St. Paul 7?7107 B N Margibi 7?7 10.6 W
Eagan 2107 Bong ? 10.6 zi
Rochester [ ? [0.7 Q Gbarpolu ? 0.6 /f_

Education Sanitation
Pl: City X has high crime rate Pl: County X has high Ebola infection rate
P2: Cities X&Y have same education level P2: Counties X&Y have same sanitation level
P3: Cities X&Y are within 80 miles

Inference
Rules Rule: P1&P2 =» Y has high infection rate

Rule: P1&P2&P3 =» Y has high crime rate

~
«dD DeepDive

~
dD DeepDive

Result
St. Paul —05— 0.7 Margibi 0.54
Eagan —05— 0.7 Bong 0.52
Rochester —05— 0 Gbarpolu 0.63
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DeepDive with Spatial Data ...

Crime rates in Minnesota

Crimes
- N
City C|E
Minneapolis| 1 [0.7 Q
St. Paul ? 107 Ty
Eagan 2 107
Rochester | ? | 0.7 Q
Education
Pl: City X has high crime rate
P2: Cities X&Y have same education level
P3: Cities X&Y are within 80 miles
Rule: P1&P2&P3 =» Y has high crime rate

~
«dD DeepDive

St. Paul —05— 0.7
Eagan —05— 0.7
Rochester 05— 0
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Inference
Rules

Result

Ebola infection rates in Liberia

Infections

C Ounty | S h Gharpolu
Montserradd 1 [0.6 q»z
Marqibi ? 0.6 Ty Y
Bong ? 10.6
Gbarpolu ? 0.6 Q‘Z /f_
Sanitation
Pl: County X has high Ebola infection rate
P2: Counties X&Y have same sanitation level
P3: Counties X&Y are within 150 miles

AV4
L

Rule: P1&P2&P3 =>»

b

haaoh TnFanta A A
T g r ettt oht—FocC

Y has high infection rate

o
=]

H

I

~
dD DeepDive

Margibi 054 0.51
Bong 052 0.45
Gbarpolu 063 0.06

Machine Learning for Big Spatial Data and Applications
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DeepDive with Spatial Data ...

Crime rates in Minnesota
Crimes

Ebola infection rates in Liberia

Infections

C Ity CI|E Cou nty I S Gharpolu
Minneapolis| 1 [0.7 Q Montserradq 1 (0.6 Q
St. Paul 7?7107 B N Margibi 7?7 10.6 W
Eagan 2107 Bong ? 10.6 zi
Rochester [ ? [0.7 Q Gbarpolu ? 0.6 /f_
Education Sanitation

Pl: City X has high crime rate Pl: County X has high Ebola infection rate
P2: Cities X&Y have same education level P2: Counties X&Y have same sanitation level
P3+—CitiesX&¥are—within 80-miles P3+—Counties X&¥ are—within—3150—mites
P3: The closer Y&X the higher Y crime rate ||nference| F3: The closer Y&X the higher Y infect rate

: Rules s ¥Y—has—high—infeection rate
Rule: P1&P2&P3 =» Y has high crime rate Rule: P1&P2&P3 =» Y has high infection rate

dD DeepDive dD DeepDive

Result =

St. Paul —05- —O0F Margibi 054 65+

Eagan 05— U7 Bong 052~ 045

Rochester 05—~ —6— Gbarpolu 063~ 006
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Where Is the Problem??

B DeepDive is built on top of Markov Logic Networks (MLN)
O MLN is designed for binary logic only
» E.g., bitwise-AND, bitwise-OR, and imply

B MLN is not spatially- aware

O It can not interpret the gradual semantics of spatial predicates
» E.g.,P3: The closer Y&X the higher Y infect rate

\

N®» Need to build Spatial Markov Logic Networks (SMLN),

a full-fledged MLN framework with a native support
for spatial data and applications

AR UnivERsITY OF MINNESOTA Machine Learning for Big Spatial Data and Applications
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Markov Logic Networks MLN

m Towards Data Science [ Faiow ) |z INDUSTRIES TOPICS -~ STATES TIPS&TACTICS  VOICES  FEATURES  VIDEO  ITBLO( Forbes

HOME  DATA SCIENCE

Billionaires Innovation Leadership

MACHINE LEARNING  PROGRAI ISUALIZATION Al PICKS

. . . ~ 53,850 views Jan 1, 2018, 08:33pm
Making Deep Learning User-Friendly,
Possible? '

#4942  eric Feuilleaubois [_Follow
Apr & . 12

ne Learning?

CONTEXT |

e Need experts and highly-trained scientists,

I need a more
USER-FRIENDLY ' LD A
computer. )

SMARTER
HUMAN.

2018): Des,

carning, and Internet of Things
machine |

specially for deep learning

academics, the most critical skill of current times.
are struggl

ation of ML, is becoming pervasive.
machine le

- From autonomous vehicles to self-tuned databases, AI and ML are found
real business problems. In Machine g, — ¢ ificial intelligence that uses alge o ets Lo derlve

everywhere. Industry analysts often refer to Al-driven automation as the
short, the gap for most

i that by 2018, 45 percant of the fastest-growlng companies will have fewer job killer. Almost every domain and industry vertical are getting impacted
indchins fearning dossie STrioyses ANTEYANCRS O STALLIACTINAS. by AI and ML. Platform companies with massive investments in Al

work, but that they

small- and medium-sized business can mu.nv
struggle to actually use it. nthe humorous (automat

O MLN is an end-to-end ML solutlon
O Covers wide range of ML problems

O Thousands of lines of ML code can be
done in few MLN formulas

research are shipping new tools and frameworks at a rapid pace.

Mp Alchemy - Open Source Al

| HousTON, TEXAS, USA 2018
ACM SIGMOD/PODS International Conference on Management of Data
June 10 - June 15, 2018  Houston, TX, USA
SIGMOD 2018: Keynote Talks

Machine Learning for Data Management: Problems and Solutions

Rules as ML Markov Logic Rule weights)
formulas Network (MLN)

Mo,

July 3, 2018 ﬁm MEMEX
Can Markov Logic Take Machine Learning to the Next Level?

Alex Woodie

Scalable RDBMS-based
MLN System

Advances in machine leaming, including deep ' '
learning, have propelled artificial intelligence (Al) into . I O I O ‘ I ea n
the public conscience and forced executives to create

new business plans based on data. However, the

AR UniveRsITY OF MINNESOTA Machine Learning for Big Spatial Data and Applications




I
MLN Architecture

F,: llliteracy = Crime [0.5] Application SyStem
F,: Crime * Non-safety [0.7] Developer Conﬁgs | Admin
W

Application
\ pp

4 Language

Rules Applications / \
(e.g., DeepDibve, ... ) Inference
Propositional
Logic Language s Gibbs Sampling
Learning \(— Algorithm
Inference
~ J Gradient Output
Descent €
) Optimization >
Compiled Rules Inference
Iterati Read /
\_ ) [lterations Ui
L 2 Factor Graph Learned Correlations’
’ i Weight
4 Grounding N\ Correlations eights
In-DBMS Factor Input and Inferred Variables’ In-memory
Graph (Supervision Data < Values Factor Graph
. u
Construction N Index
AN
Factor s [r] 0.7 Factor Graph
- / Graph S Variables \ /

AR UniveRsITY OF MINNESOTA Machine Learning for Big Spatial Data and Applications



I
MLN Architecture

F,: llliteracy = Crime [0.5] Application SyStem
F,: Crime * Non-safety [0.7] Developer Conﬁgs | Admin
W

Application
4 Language \( Rules

Applications /

Inference \

DDlog Language (e.g., Sya, Flash, ... )
with Spatial In-memory
Extensions 4 Learning \ Spatial Factor
\_ Y, . . Inference Graph Index
Spatial Gradient Output
Descent €
) Optimization >
Compiled Rules Inference
. Read /
\_ ) Iterations Update
L 2 Factor Graph Learned Correlations’
4 Grounding N\ Correlations Weights
In-DBMS Spatial Input and Inferred Variables’ In-memory
Factor Graph (S“perViSi"“ Data s Values Spatial Factor
Construction \C N Graph Index
Factor s [r] 0.7 ' Factor Graph
\_ J Graph e’ Variables
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Sya

Crime rates in Minnesota Ebola infection rates in Liberia
Crimes Infections
CI ty C R _h . C ou nty | S _B Gharpolu
Minneapolis| 1 [0.7 #dpolis -~ Data  [Montserradd 1 [0.6
St. Paul 2 |07 — St. Paul Margibi 2 106 — ) -.
Eagan 2 0.7 ' Eagan Bong ? 10.6 Q T 5 s
Rochester | ? [0.7 Q.VZ Gbarpolu | ? |0.6 f
Education Rochester Sanitation T
Pl: City X has high crime rate Pl: County X has high Ebola infection rate
P2: Cities X&Y have same education level P2: Counties X&Y have same sanitation level
P3+—Cities X&¥r are—within 80-miles P3+—Counties X&Y—are—within3+50—mites

P3: The closer Y&X the higher Y crime rate ||nference| F3: The closer Y&X the higher Y infect rate

Rules | .30 oo o5 v o
Rule: P1&P2&P3 =» Y has high crime rate Rule: P1&P2&P3 =

hieh infeetion—rate

=1 o n o
[=} g I T o T o Too

Y has high infection rate

~_~ ~_~

NE Sya

Result

St. Paul —05- —6F 0.9 Margibi 054 05+ 0.76
Eagan 05— O 0.7 Bong 052~ 045 0.53
Rochester 05— —0— 0.3 Gbarpolu 063~ -0:66- 0.22
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Machine Learning meets Big Spatial Data

Ll -
Applications
SPATIAL REGRESSION
MODELS FOR THE
A SOCIAL SCIENCES

Spatial

Spatial Regression *

Applications
/ ] Learning
CYBER SECURIT . —
e Finance \ILLY
Retal :‘? Healtheare Media
Travel

digitalhealth

N o n 'S pat i a I news @ networks @ intelligence © I
= {7 ”m e I
=5 06 Rl TR Knowledge Base
APPLICATIONS oF E==R 09 o I
MACHINE LEARNING Knowledge Base | ML
» Fundamental
Non-Spatial Spatial Algorithms
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I
MLN Architecture

F,: llliteracy = Crime [0.5] Application SyStem
F,: Crime * Non-safety [0.7] Developer Conﬁgs | Admin
W

Application
4 Language \( Rules

Applications /

Inference \

DDlog Language (e.g., Sya, Flash, ... )
with Spatial In-memory
Extensions 4 Learning \ Spatial Factor
\_ Y, . . Inference Graph Index
Spatial Gradient Output
Descent €
) Optimization >
Compiled Rules Inference
. Read /
\_ ) Iterations Update
L 2 Factor Graph Learned Correlations’
4 Grounding N\ Correlations Weights
In-DBMS Spatial Input and Inferred Variables’ In-memory
Factor Graph (S“perViSi"“ Data s Values Spatial Factor
Construction \C N Graph Index
Factor s [r] 0.7 ' Factor Graph
\_ J Graph e’ Variables
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Spatial (Autologisitc) Regression

B Find whether a spatial phenomenon exists or not, based on neighbor

values and features =one= 1) st
. 117 l2 —7 I3 14
Weather Prediction Birds Migration 0 1 1 1
cpEesiiies & | Is le I7 ls
P b Features 1| 1| o| 1| phenomenon
2 lo I10 111 l12 / value
11 1| o o
113 114 15 16 4
1 ? 0 0
N \\-
\% \ (x1=1,x2=0)
- 9

Missing value

Crimes Distribution Features
Land Cover Neighbor
o Pr(z;=1|X,Zn;,) values
& Pr(zi=0|X,Zn;,) _ r\
2 2
=1 keN; k
Learning regression parameters for 80K Regression Parameters

cells takes more than one day ®
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I ——
Spatial Regression  guesas vy (TR fue veists

formulas Network (MLN) >
as SMLN Problem

Regression : _
g ZE=1%2x) _ Equation S SMLN Rules Rule weights =
& Pr(zi=0|X.Zx,) — — _ > -
S B n Y 2 Transformation Regression
j=113% keN; Parameters
SMLN SMLN Rules
- >
Transformation B,,nN
SMLN Rules >
Pr(z;=1|X,2Zx,) [Z4 " Xy, Bq]
lo — L= D121 + 2
& Pr(z1—0|X,ZN7.) /81 1 nEkENz k [21 I\Zz’ n]
_ [Z, " Z3, n]
Pr(z=1
log P:&:O; = G117 +nze + 7723| Z, " X, B]
. 2" Z,, n] Theoretical proof of the
log prE=Y = Biay + 0z + 2 + 027 + 020 2.7 Z5 nl Autologistic Regression-
Z, "X, B . . .
- EZS 21’ ]1] SMLN equivalence is in
324N
- the paper
log % = frrr +nza+n2s | pap
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.
Multinomial Autologistic Regression

B Prediction and feature variables are multinomial (i.e., categorical)
1 Domain values are predefined values (e.g., {0, 1, 2})
0 Represent each multinomial variable with a set of binary variables

Pivot 0,0 0,1 0,2
Prediction | %t (O> F x>’ T T’ \
eature J J J

zi = z(1) {0,1} z; = x;’o x;’l x;’z {0,1}
{07 17 2} Z’L(2) {O, 1, 2} ;132.’0 ;132.’1 5172-’2

J J J

Pr(z;(1)=1|X(i),2 UL 1,6 1,
log P =Tr ey = 2 5 Bl S S mea(s)

< J=1t€Dy, keN; s€D,
Pr(z;(2)=1X(1),Z2 m
log PrEmEOg 1IXE’L§ ng o E Z 532"tx;2"t + Z Z n2’szk(8)
\ J=1 tEij keN; SE’DZI@

Pr(z;(0)=1)=1— Pr(z(1)

AR UnivERsITY OF MINNESOTA Machine Learning for Big Spatial Data and Applications



Scalability Accuracy

100000 1

=e—TurboReg =e—TurboReg
_ 0.9 .
510000 =&—ngspatial 08 —A—ngspatial
(@) .
=
S 1000 — 07
e S 06
Q100 2 0.5
£ £
= S 04
= 10 S
<
= 1 0.2
0.1
0.1 0
250 lk 3.5k 21k 84k 250 1k 3.5k 21k 84k
Grid Size Grid Size

At least three orders of magnitude performance gain, while

accuracy is almost the same.
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I
Spatial Probabilistic Graphical Modeling (SPGM)

B Performing uncertain (i.e., prob.) predictions over spatial data
O Classical ML approaches (e.g., regression) ignore the probabilistic relationships

Disaster Analysis Crime Analysis Public Health Monitoring
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B Representing the world as a collection of random variables with joint
probabilistic distribution
O  Tasks: learning the distribution, and inferring unknown variables via the distribution

e )

__________________

Spatial Markov Random Field (SMRF) Spatial Hidden Markov Model (SHMM) Spatial Bayesian Network (SBN)
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I
SMLN for SPGM

B Generates an equivalent set of weighted rules containing logical
predicates for any SPGM input
O Weights represent the original SPGM parameters
O Rules follow the syntax of the DDlog logic programming framework

U -

Spatial Markov Random Field (SMRF) Spatial Hidden Markov Model (SHMM) Spatial Bayesian Network (SBN)

MLN Rules MLN Rules MLN Rules

[P, ~ Fy, B4] [0, > P, b] ['P, v!F,v!C|]
[P, ~ Py [P, = P,,a] ['Pyv!P, v!F,v!C,]
[P, ~ Py [0, 2 P,, b] ['P, v !F,v!C,]
[P, ~ F,, B] [P, > P, a] ['P,v!P,v!F,v!C,]
[P, * Py [0; > P;, b] [!D; v !F]
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Machine Learning meets Big Spatial Data

Ap p I i cati O n s SPATIAL REGRESSION
A SOGIAL SCIENCES
Spatial
Applications
Learning
| digitalhealth
N o n 'S pat I a I g news @ networks @ intelligence © I
= ’@‘ g e @9 :
TOP 10 see l Knowledge Base
]
MACHINE LEARNING Knowledge Base : ML
» Fundamental
Non-Spatial Spatial Algorithms
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QARTA: An ML-based System for Accurate Map
Services Ansvier

m Map-Centric. =~
QARTA learns : Query

its own map in  : Calibration
terms of Layer /] Query
topology and
metadata

m Query I
Calibration: Map_ Map Matching Map Making Pol Map
QARTA learns | Making Jpol | Map
the error Layer Match or Make? -
marginsof Tt .
various e s e
algorithms and | pata Layer = G «

use it to : Data Crawling =R =0Tl | Data Sampling

calibrate its e S S S SRR S

Map Services APIs Trajectories Pol Trips Map

answer

AR UniveRsITY OF MINNESOTA Machine Learning for Big Spatial Data and Applications



QARTA: Why..??

B Problem came up from the
Taxi company working in

Qatar

Too much construction
and road changes In
town (in preparation to
FIFA 2022)

0 Local focus, Global vision

Peninsula

QATAR'S DAILY NEWSPAPER
3" Best News Website in the Middle East in 2017

Qatar road network increased three times hetween

2013-18: Ashghal

O 24 Apr 20181138

Al Muhannaci seid thet the length of the road network increased by about three fimes hetween 2013
and 2018 compared to before 2013. He said that the volume of roadworks carried out over the past five
years also increased from 1,700 km to 6,000 kilometers, while sanitation capacity doubled, rainwater

drainage grew 7 fimes, and pedestian frais increased 12 fimes during the same period.

M. UNIVERSITY OF MINNESOTA

Commercial maps cannot
cope with such changes
in road networks, and are
not cheap

CACM, April 2021

KARWA TAXI APP

Make a booking for future or for immediate pickup

Traffic Routing in the
Ever-Changing City of Doha

BY SOFIANE ABBAR, RADE STANOJEVIC, SHADAB MUSTAFA, AND MOHAMED MOKBEL

N DECEM-
BER 2, 2010,
Qatarwas
announced to
host2022 FIFA
World Cup.
That was time for celebrat-
ing the first-ever Viiddle
Eastem country to organize
the tournament. The 1.8M
populaticn o Qatar then
{2.8M today) neverimagined

that lasted 10 minutes yes-

today. Cab driv y
of Doha (Qatar's capital),
who are mostly foreigners,
alsowish they couldrely on
popularnavigation services
such as Google Maps, Here,
or Tomtom.

Yet, all such systems
fall shortin coping up with
the rapid urbanization and

the journey their country wa
about to embarked. Indeed,
inless than 10 vears, the pop-
ulation grew by more thena
half, pushing the available ur-

ban ervices to

ngingroads
in Doha. This was actually
depicted ina very popular
cricaturein one of the most
widelydistributed dailylocal

their limit. At the same time,
the country undertookan
ambitious investment plan
0f$200B on varicus infra-

network, six newstadiums,

several new satellit

and an aston g

ads, which tripled

f the road network
:

boosted the
ical life of people in Qatar,

it did disrupt theway they
navigate the urban space

and their mopility pattems
in general. Simple com-
mutes towork, drops and
ickups of kidsto and from
schocls, became challenging
andimpossible to plan vith
daily changes in the road
layout, including temporary
and permanent dosures,
deviations, new conneetions,
conversions of roundabouts
into signaled intersections,
turn restrictions, to name but
afew. Acommute to school

howing Google
maps asa limping turtle that
is helplesslytryingto catcha
bunny represening the road
changesin the cityof Doha.!
Besides the general public
who isnot happy with the
moutes offered by navigation
systems, other srakehold-
ers from publicand private

rationwith QatarMobility
Innovation Genter (QMIC)
1o come upwith an accurate
map forthe cityof Doha,
Qatar’ The idea was touse
d froma fleet
thatare continu-
ouslytracked, foraccurate
and timely detection of road
changes, such asnew roads,
road dosures, and detours.

sectorsweres with
the poor qualityof existing
digital maps. For example,
the Ministry of Transport
and Communication was
facing issues getting access
to the most accurate map of
the road networ, needed
fortheir trafic modelng.
Also, transporcation, delivery,
and logistics companies
that heavily rely on eccurate
maps, routes, andtravel time
estimates were tirecof the
y st drivers and missed
rendeavous.
Earlywork:Silent maps
are not enough. The ssue of
inaccurate local maps has
triggered an carly work at
Qatar Computing Research
Intirute (QCRU)in collabo-

Though that carlyworkwas
successful in coming up with
amore aceurate map than

what navigation systems
have, itwas not encugh to

address the main problem
of routing. Accurate topo-

ogical maps do not say

muchabout the time nee
heachroad

d

speed, fare, route, as well as
sampled GPS points foreach
trip—agold mine for our
research agenda. But most
importantly, we also leamed
fromour partners about the
real challenges they face,
which helped us prioritize
ourprojects.

‘Map enrichments for
traffic-aware routing. Our
first project with Karwa was
to enrich the topological
‘maps with traffic informa-
tion, that is, accurate edge
weights for each road seg-
ment foreach hour of the
day. Inferring traffic informa-
tion from a large number
of vehicles can be relarively

ightf However,

segment—a main function-
ality needed for any routing
application.

Dataaccess and collabora-
tion. Toaddress the routing
problem in the ever-changing
roads of Doha, we partnered
with the national taxi compa-

The collaboration
s toall taxi data
ricand live) that
wok place in the country,
inclading pick-up and drop-
off locations, time, duration,

theproblem ismuch more
challenging when the data

is sparseand doesnot

cover many roads with large
frequency. We tackle these
problems in Stanojevic et
al**and derive a traffic layer
with an accuracy comparable
tothe commercialmaps us-
ing only sparse dataavailable
touseither from Karwa Taxi
data as in Stanojevic et
or from using commercial
map APIs asin Stanojevic et

APRIL2071 | VOL 64 | ND.¢ | COMNUNICATIONS OF THE AcM 67
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@ recommend

routes that take longer

traffic

TECHNOLOGY TODAY.COM

Delivery entrance is not the same pla

Map shows a location far away from actual drop-off point

ce as the street address

Maps don't know about road closures

Time estimates are inaccurate

Opdated details are not reflected
ew exits, turn lanes, one-waystreets, etc.)

Road names are incorrect

Other

My mapping apps are always perfect

% o 5 10 15 20 25 30 35

R .

Poor maps costing delivery companies USS6bn annually

ADAM FROST ¢

MAPPING

Based on a survey of delivery drivers in the USA and conducted by an independent

research firm, the first ‘Mapping in Logistics Report’ has revealed that ‘broken maps’

are costing the logistics sector an estimated US$6bn annually

40

45

‘ https://www.traffictechnologytoday.com/news/mapping/poor-

maps-costing-delivery-companies-us6bn-annually.html
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Edge Weight Inference: Who is doing it?

B Traffic departments: Loop detectors or plate recognition

Edge Weights are considered as proprietary
information, not to be shared

99 phones and a little red wagon
° The streets were mostly empty, but the map showed a traffic jam

By Jay Peters | @jaypeters | Feb 3, 2020, 5:08pm E:



Edge Weight Inference in QARTA:

B Input: Trips (Pickup time/location, Drop off time/location)
(A,F,15) 2> W, + ws; + ws=15
(B,H,28) > w; T W, + We+ Wy + W;; =28

B Objective: Given a set of edges,
each with length /, and unit length
weight W, a set of trips T, each with ® Challenges:

a path P, find W, that minimize: d A direct solution may result in zero or
2 negative weights

Z (Z Wel. = 5t> O Scalability is a major issue: Hundreds

vl heert of thousands of edges with millions of

trajectories

Rid
\age Q Over-fitting for unreliable edges

Regression

X , Edge .
equations (EERAUELSIEEEE . | 0 Need Ito accomm;)ggtﬁ for a fine )
inY i
per ranularity (e.g., ours per wee
unknowns _lemporal g y (e.g P )

granularity

Granularity
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Edge Weight Inference in QARTA

B After several tuning steps: (Details in the paper)

B Objective:

2 2

Regularization Average
strength speed

/ /
WL, + W, Z I, — &, 2 +@Z(Wg _®)2
g

teT \g:P,NHg+® e € (Pt\H)

X equations in
Y unknowns

e

S =

\
10K equations in
500K unknowns

M_ UNIVERSITY OF MINNESOTA

eeHg

X ‘equations in _ Edge weights
Y" unknowns R|dge. per granularity
Regression iy o
o : ge weights
1K equations in Analysis per hour

5K unknowns

Granularitya Hour
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.l ATET 3G 6:05 PM

Estimated Time of Arrival (ETA) Ell oo (9

NMB.G mi ET8:08 PM

B The accuracy of query answers heavily
rely on Estimated time of Arrival

ETA: 15MIN

Idea: Can we study the error patterns of each algorithm
under various context, and use to adjust the query answer.

w
(=]
1

Uber taps ClimaCell to improve ETA estimates
with hyper-local weather data

PAUL SAWERS ~ @PSAWERS  FEBRUARY 6, 2020 8:00 AM

B
=}
1

w
o
1

Uber is partnering with weather technology company ClimaCell to enable more

[}
o
1

accurate estimated time of arrival (ETA) predictions for drivers and riders.

=
Estimated travel time (mins)

Estimated travel time (mins)

Founded in 2016, Boston-based ClimaCell specializes in real-time weather

Q = T ™ ! T T
0 10 20 30 40 50 60 0 1 20 30 4 S0 60 forecasts. Rather than relying on government data typically garnered from
GT - travel time (mins) GT - travel time (mins)
OSRM Google Maps
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Model Building

B Trip: (Pickup time/location, Drop off time/location, &)
O ¢ is the difference between actual and estimated time of the trip

Feature i
Trip Data Vool Sraelha Model M that
Feature . I ) maps Vto §
—_—> Training Boosting —

Extraction

Data Regressor

B Featuresin Vthat impact 6 _ _
B A model M will be built for each

ETA algorithm and driving modality

O Spatial Zoning
» Origin
» Destination
O Temporal Zoning
» Pickup time OSRM Vehicles M,
» Drop off time
O Trip Characteristics
» Trip distance
» Trip duration

OSRM Motorbikes M,
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Query Calibration in QARTA

B Shortest Path queries

oute &
~ =

s chicles ETA + 6
Origin, Feature Feature Vector_ 7 M’ L) + —>
DeStlnatlons E E V 4) OSRM Motorbike M
Start time xtraction :
Y

> Shortest Path Route & ETA
Algorithm _

B Range and kNN queries

Feature Extraction OSRM Vehicl " A +ETA
. . 14 ehieles ' nswer
ergln, —> BRAEEEAU LI Answer Feature Extraction J— - >
Distance query processor JERISEIN I - : OSRM  Motorbike
or K ' ' - 4
Feature Extraction

Feedback
Machine Learning for Big Spatial Data and Applications 39
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e
QARTA in Deployment

59K & N\ QARTAis deployed in all Taxis in Qatar ~4Kvehicles

‘I@ YRS Alocal food delivery company ~3Kmotorbiks

_ Routlng
B QARTATreceives: ,
. ) e
d ~235K daily API calls -
d  ~1 Million daily GPS tracks
Y )

@
Education C ty

dealedll & lA.

B APIs & Services:
In-traffic routes

Travel time estimation
Complex route planning
OD matrices

Search & addresses

Fare estimation Taxi Dispatching

Link: https://qgarta.io

o000
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I
QARTA vs Other Map Services: Shortest Path Query

46.34
s 437 B Mean HMedian
40
g35
B Q-Map: Runs QARTA Map 5 30 o
. . 25 .
Making layer without any £ e P B, wss
calibration =
d OSRM on QARTA map 3
OSRM Google Q-Map Q-Calib. QARTA
500
B Q-Calib: Runs QARTA 450 .
calibration without Map Pl
. — 350
Making layer S
d Calibrating OSRM engine £
fﬁ 200
150
100

OSRM Google Q-Map Q-Calib. QARTA
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Summary:

Applications
A R
I
I
Spatial I
I
I
I
e
/—\// Machine ~ Applications l
CYBER SECURIT Lea% " I
| digitalhealth Mkl '
Non-Spatial rews o revorks0 nlgenced I
” I
v 9y
oo | Knowledge Base
-.. I
MACHINE LEARNING Knowlerge Base | ML
» Fundamental
Non-Spatial Spatial Algorithms
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Machine Learning meets Big Spatial Data

Machine
Learning

PRIVACY
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