
Learning better discretizations for singular variational problems

Antonin Chambolle

CEREMADE, CNRS, Univ. Paris-Dauphine / PSL, France

(joint with C. Caillaud (CMAP, Palaiseau), L. Kreutz (Münster), T. Pock (Graz))

Distinguished lectures for HKSIAM and

Hong Kong Universities, 24th April 2021

Outline:

I Energies for variational image reconstruction, singularities;

I Example: total variation (TV);

I Sharp isotropic TV via homogenization;

I Sharp isotropic TV: learning of a dual approximation.

A distant goal (but getting closer each year...)

I “Inpainting” with “Elastica”

What is this? (RHS data from J. Weickert)

A distant goal (but getting closer each year...)

I “Inpainting” with “Elastica”

Inpainted with convexified “Elastica” [Ch, Pock, Num. Math. 19]

A distant goal (but getting closer each year...)

I “Inpainting” with “Elastica”

Inpainted with convexified “Elastica” [Ch, Pock, Num. Math. 19]

I Discretization is poor (3D lifting, boundary ↔ 1-current)

A simpler problem

I “Total variation inpainting” (not a good idea)

TV Inpainting

A simpler problem

I “Total variation inpainting” (not a good idea)

TV Inpainting

I A standard discretization does not even work to properly recover a discontinuity...

Starting point

Improve, or possible “learn”, discrete surface energies / total variations so that

I They are faithful, possibly precise approximations of the continuous T.V.;

I They behave “well” at the discrete level (isotropy, sharpness...)

The total variation

In this talk TV (u) =
∫
|Du| is the “total variation” of an image u (that is, a function

defined on a 2-dimensional domain). It is defined:

I as
∫
|∇u(x)|dx = ‖∇u‖L1 if ∇u exists and is integrable;

I by duality for more general u’s (formula comes later);

I it is well defined for non-continuous functions, for instance
∫
|DχE | is the

perimeter of the set E ;

I in general, minimizers (with other terms) can have discontinuities;

I in practice, TV is replaced by more or less good discrete approximations and then
optimized.

Issue in this talk: build precise discrete approximations of the TV for discontinuous
functions...

Related works

I Non-standard finite differences for anisotropic diffusion [Weickert, Welk, Wichert
’13]

I Graph-based / MRFs / crystalline energies [Boykov, Kolmogorov ’03], [Rother,
Kolmogorov, Blake ’04], [Boykov, Kolmogorov, Cremers, Delong ’06], [AC ’05],
[Darbon-Sigelle ’06] [Hochbaum ’01];

I Upwind discretization [AC, Levine, Lucier ’11];

I “Shannon TV” [Abergel, Moisan ’17];

I Conforming P1 finite elements [Bartels ’12];

I Non-conforming P1 (Crouzeix-Raviart) finite elements [AC, T. Pock 18];

I Duality based discretization using H(div)-conforming Raviart-Thomas (RT0)
vector fields [Destuynder, Jaoua, Sellami 2007], [Herrmann, Herzog,
Schmidt,Vidal, Wachsmuth ’18], [Caillaud, AC ’20];

I Approximate Raviart-Thomas [Hintermüller, Rautenberg, Hahn ’14], [Condat ’17].

Here: Attempt to optimize graph-based or finite-differences/elements based methods
by automatic learning.

Related works

I Non-standard finite differences for anisotropic diffusion [Weickert, Welk, Wichert
’13]

I Graph-based / MRFs / crystalline energies [Boykov, Kolmogorov ’03], [Rother,
Kolmogorov, Blake ’04], [Boykov, Kolmogorov, Cremers, Delong ’06], [AC ’05],
[Darbon-Sigelle ’06] [Hochbaum ’01];

I Upwind discretization [AC, Levine, Lucier ’11];

I “Shannon TV” [Abergel, Moisan ’17];

I Conforming P1 finite elements [Bartels ’12];

I Non-conforming P1 (Crouzeix-Raviart) finite elements [AC, T. Pock 18];

I Duality based discretization using H(div)-conforming Raviart-Thomas (RT0)
vector fields [Destuynder, Jaoua, Sellami 2007], [Herrmann, Herzog,
Schmidt,Vidal, Wachsmuth ’18], [Caillaud, AC ’20];

I Approximate Raviart-Thomas [Hintermüller, Rautenberg, Hahn ’14], [Condat ’17].

Here: Attempt to optimize graph-based or finite-differences/elements based methods
by automatic learning.

0. Typical model:

Focus on problems of the form:

min
u=u0 ∂Ω

∫
Ω
|Du|

(
or +

∫
Ω
|u − g |2dx (ROF)

)
where u0 ∈ {0, 1}, so that this is equivalent to finding sets E with lowest perimeter
and boundary condition χE = u0. One expects to find (in general) sharp solutions
u ∈ {0, 1} a.e.
Discretize: One minimizes in practice a convex problem of the form

min
ui=u0

i ,i∈I 0
Fh(ui) : u ∈ RN(h)

where (ui)
N(h)
i=1 is supposed to be a discrete representation of u at scale h > 0, and Fh

approximates the total variation in some sense.

Typical model:

In practice, depending on the form of Fh, one can expect more or less “nice” or
“precise” results (sharp, isotropic, or not...)

“forward” “Raviart-Thomas” “Condat”

Typical model:

Here the discrete problem has usually the form of a convex-concave saddle-point
problem:

min
u∈Cu

sup
w∈Cw

〈w ,Du〉 ; minu∈Cu ‖Du‖∗

for D some discrete derivative, and where Cu and Cw are convex sets. More regular
versions include

min
u∈Cu

sup
w∈Cw

〈w ,Du〉 +
1

2
‖u − g‖2 (“ROF”)

which is strongly convex wr u, or a “regularized” variant:

min
u∈Cu

sup
w∈Cw

〈w ,Du〉 − ε

2
‖w‖2 +

ε

2
‖u‖2

for ε > 0 a small parameter, which is strongly convex wr both u and w .

I. “discrete” discretizations: Graph-TV

One basic way to build “sharp” total variations is to consider purely discrete finite
differences on a graph. The general form is as follows: Assume we are given a discrete
2D image ui ,j on a square grid, we define a graph total variation as∑

(i ,j),(i ′,j ′)

α(i ,j),(i ′,j ′)(ui ′,j ′ − ui ,j)
+

(here x+ = max{x , 0}). [For u ∈ {0, 1}, this is nothing but a standard “cut” loss →
max-flow algorithms.]

Using such functions produces in practice quite anisotropic (crystalline) measures of the
perimeters. This (visible) problem can be mitigated in two different ways. The most
common is to increase the number of edges. For “fun” (or computational efficiency)
let us consider an alternative approach (joint with L. Kreutz, Münster WWU).

Graph TV

We will try to build an “isotropic-`1” discretization. The simplest form would be:∑
i ,j

α+
i+ 1

2
,j

(ui+1,j − ui ,j)
+ + α−

i+ 1
2
,j

(ui ,j − ui+1,j)
+

+ α+
i ,j+ 1

2

(ui ,j+1 − ui ,j)
+ + α−

i ,j+ 1
2

(ui ,j − ui ,j+1)+

which involves only horizontal/vertical directions.

Graph TV

If all the α’s are 1, this is known as an “`1” discretization of the total variation, which
in a continuum limit would approximate the anisotropic functional

∫
|∂1u|+ |∂2u|, and

produces block artefacts. (It measure the lengths only through vertical and horizontal
projections like a New-York cab driver.)

On the other hand,

I it is very easy and fast to optimize (graph cuts,
or horizontal/vertical splitting...)

I one can show that it “always” produce sharp
interfaces (related to co-area formula / Lovasz’
extension)

Homogenization of graph TV

The isotropy can be improved by “homogenization”. In practice, the idea is to use
periodic oscillating weights α± which produce, in the continuum limit, an “effective
surface tension” φ (;

∫
φ(Du)) given by an exact “cell formula”, defined for ν ∈ R2,

φ(ν) = min
u

{ ∑
(i ,j)∈Y

α+
i+ 1

2
,j

(ui+1,j − ui ,j)
+ + α−

i+ 1
2
,j

(ui ,j − ui+1,j)
+

+ α+
i ,j+ 1

2

(ui ,j+1 − ui ,j)
+ + α−

i ,j+ 1
2

(ui ,j − ui ,j+1)+ :

ui ,j − ν ·
(
i
j

)
Y -periodic

}
where here Y is a periodicity cell of the form {1, . . . , n} × {1, . . . ,m}. (Typically,
m = n = 2, 3, 4....) (u is a periodic perturbation of the affine function x 7→ ν · x.)

Homogenization

... and one would be interested in solving:

min
(α)
L(α) :=

1

2

k∑
i=1

|φ(νi)− 1|2

where the “loss” L depends on α through the dependence of φ(·) on α and νi are a set
of given directions.
So one needs to estimate ∇(α)φ(νi), for each direction νi .

Derivative of the energy

In our case the minimal energy φ(ν) can be found by solving a saddle-point problem:

φ(ν) = min
u∈Ci (ν)

sup
w∈Cw

〈D(α)u,w〉

−ε
2
‖w‖2 +

ε

2

∥∥∥u − (
i
j

)
· ν
∥∥∥2

which we regularize in order to have a unique solution (u(D),w(D)) for a given
discrete derivative operator D.

Derivative of the energy

In our case the minimal energy φ(ν) can be found by solving a saddle-point problem:

φ(ν) = min
u∈Ci (ν)

sup
w∈Cw

〈D(α)u,w〉 −ε
2
‖w‖2 +

ε

2

∥∥∥u − (
i
j

)
· ν
∥∥∥2

which we regularize in order to have a unique solution (u(D),w(D)) for a given
discrete derivative operator D.

Derivative of the energy

Thanks to the regularization one easily sees that

I D 7→ (u(D),w(D)) is continuous and

I D 7→ φ(ν) =: Eν(D) is C 1,1.

Indeed:
sup
w∈Cw

〈Du,w〉 − ε

2
‖w‖2

I is convex with (1/ε)-Lipschitz gradient with respect to Du

I is convex with (C/ε)-Lipschitz gradient with respect to D in a neighborhood of
D, for C > ‖u(D)‖2.

I so its infu has Hessian bounded from above.

I symetrically (taking first infu then supw) one gets a bound from below.

Derivative of the energy

Thanks to the regularization one easily sees that

I D 7→ (u(D),w(D)) is continuous and

I D 7→ φ(ν) =: Eν(D) is C 1,1.

Indeed:
sup
w∈Cw

〈Du,w〉 − ε

2
‖w‖2

I is convex with (1/ε)-Lipschitz gradient with respect to Du

I is convex with (C/ε)-Lipschitz gradient with respect to D in a neighborhood of
D, for C > ‖u(D)‖2.

I so its infu has Hessian bounded from above.

I symetrically (taking first infu then supw) one gets a bound from below.

Derivative of the energy

Then, computing the differential is quite standard (one can for instance estimate
Eν(D + tL), t small, from above and below using the optimal values ut ,wt , and pass
to the limit...) and one finds

∇DEν(D) = w(D)⊗ u(D)

So here one just needs to solve (with some precision) the saddle point to evaluate the
derivative from the optimal solutions (u,w). Then one can implement a gradient
descent and optimize the main criterion L(α).

Derivative of the energy

Then, computing the differential is quite standard (one can for instance estimate
Eν(D + tL), t small, from above and below using the optimal values ut ,wt , and pass
to the limit...) and one finds

∇DEν(D) = w(D)⊗ u(D)

So here one just needs to solve (with some precision) the saddle point to evaluate the
derivative from the optimal solutions (u,w). Then one can implement a gradient
descent and optimize the main criterion L(α).

Application / Results

2× 2 periodicity cell 4× 4 cell

8× 8

Application / Results

`1-TV 2× 2

4× 4 8× 8

Application / Results

`1-TV 2× 2

4× 4 8× 8

Application / Results: inpainting

Boundary datum `1-TV 2× 2 a

4× 4 6× 6 8× 8

It does NOT work at all!! (main reason: non-uniqueness → threshold)

II. “Continuous” discretizations

(More in the spirit of finite differences or finite element discretizations.)

A quite general approach consists in discretizing the dual definition of the Total
Variation. One has given a domain Ω ⊂ Rd and u ∈ L1(Ω):

TV (u; Ω) =

∫
Ω
|Du| = sup

{
−
∫

Ω
u divφdx : φ ∈ C∞c (Ω;Rd), ‖φ(x)‖ ≤ 1 ∀x

}

Indeed: −
∫
u divφ dx =

∫
φ · Du and the supremum gives back

∫
|Du|. (This makes

sense as soon as the sup above is finite.)

; Discretize u, φ, and the norm constraint.

General discrete model
ui,j

ui,j+1

ui+1,j

p1
i+ 1

2
,j

p2
i,j+ 1

2

Our general discrete total variations are given by:

TV (u) := sup {〈p,Du〉Y : ‖Fp‖Z∗ ≤ 1} = min
q:F∗q=Du

‖q‖Z

where p = (p1, p2) are the dual variables and F = (F 1, ...,F L)
are interpolation kernels defined by convolutions:

(F lp)i ,j =

(
(F l ,1p1)i ,j
(F l ,2p2)i ,j

)
=

(∑ν
m,n=−ν ξ

l
m,np

1
i+ 1

2
−m,j−n∑ν

m,n=−ν η
l
m,np

2
i−m,j+ 1

2
−n

)

Here the discrete gradient is Du = (D1u,D2u), given by:{
(D1u)i+ 1

2
,j = ui+1,j − ui ,j i = 1, . . . ,M − 1, j = 1, . . . ,N,

(D2u)i ,j+ 1
2

= ui ,j+1 − ui ,j i = 1, . . . ,M, j = 1, . . . ,N − 1.

Example: Forward differences
∑

i,j

√
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 ui,j

ui,j+1

ui+1,j

p1
i+ 1

2
,j

p2
i,j+ 1

2I Interpolation kernels (Nearest neighbor interpolation):

(Fp)i ,j =

(
p1
i+ 1

2
,j

p2
i ,j+ 1

2

)
.

Interpolation kernels F

I The Z -norm is given by

‖z‖Z =
∑
i ,j

√
(z1

i+ 1
2
,j

)2 + (z2
i ,j+ 1

2

)2, with dual ‖z‖Z∗ = max
i ,j

√
(z1

i+ 1
2
,j

)2 + (z2
i ,j+ 1

2

)2

Example: Raviart-Thomas ui,j

ui,j+1

ui+1,j

p1
i+ 1

2
,j

p2
i,j+ 1

2

I Interpolation kernels (Nearest neighbor interpolation):

(F 1p)i− 1
2
,j− 1

2
=

(
p1
i− 1

2
,j

p2
i ,j− 1

2

)
, (F 2p)i− 1

2
,j+ 1

2
=

(
p1
i− 1

2
,j

p2
i ,j+ 1

2

)
,

(F 3p)i+ 1
2
,j− 1

2
=

(
p1
i+ 1

2
,j

p2
i ,j− 1

2

)
, (F 4p)i+ 1

2
,j+ 1

2
=

(
p1
i+ 1

2
,j

p2
i ,j+ 1

2

)
.

I ‖(z1, z2, z3, z4)‖Z :=
∑
i ,j

|z1
i− 1

2
,j− 1

2
|2 + |z2

i− 1
2
,j+ 1

2
|2 + |z3

i+ 1
2
,j− 1

2
|2 + |z4

i+ 1
2
,j+ 1

2
|2

Example: Hintermüller et al/Condat’s discretization ui,j

ui,j+1

ui+1,j

p1
i+ 1

2
,j

p2
i,j+ 1

2I Interpolation kernels (bilinear interpolation):

(F 1
p)i,j =

 p1

i− 1
2
,j

+p1

i+ 1
2
,j

2
p2

i,j− 1
2

+p2

i,j+ 1
2

2

 ,

(F 2
p)i+ 1

2 ,j
=

 p1
i+ 1

2 ,j
p2

i,j− 1
2

+p2

i,j+ 1
2

+p2

i+1,j− 1
2

+p2

i+1,j+ 1
2

4

 , (F 3
p)i,j+ 1

2
=

 p1

i− 1
2
,j

+p1

i+ 1
2
,j

+p1

i− 1
2
,j+1

+p1

i+ 1
2
,j+1

4
p2
i,j+ 1

2

 .

I ‖(z1, z2, z3)‖Z :=
∑
i ,j

|z1
i ,j |2 + |z2

i+ 1
2
,j
|2 + |z3

i ,j+ 1
2
|2

Comparison

Input

Comparison

80.366 26.937 86.226 27.024 80.967 23.615 22.899 23.299

81.726 27.021 86.223 26.989 80.357 23.733 23.190 23.609

Forward differences

Comparison

69.822 23.605 22.407 23.602 69.940 23.615 22.620 23.605

69.797 23.615 22.423 23.614 69.809 23.617 22.825 23.602

Raviart-Thomas →why???

Comparison

71.509 40.505 36.030 41.699 71.537 41.714 35.853 40.273

71.465 40.055 35.890 38.027 71.447 39.842 51.409 41.768

Condat

Theoretical results

1. For the “Raviart-Thomas” variant:

I “(ROF) denoising problem”: optimal error bound:

Theorem. Assume that a dual field for ū solving (ROF) is Lipschitz: then
‖ū − ūh‖L2 ≤ C

√
h (for some constant essentially depending on ‖g‖∞ and the

Lipschitz constant of the dual field).
Remark: the condition is probably not often satisfied. It is satisfied if g = χB .

I “Inpainting”: assume gν,a(x) = χ{x ·ν≥a} is the characteristic of a half-plane (or
-space), let Vh be the space of discrete piecewise constant functions at scale
h > 0:

Proposition. Let gh
ν,a be an appropriate discretization of gν,a on ∂Ω, at scale h.

Then uh = Πhgν,a (the projection onto Vh) is such that

TVh(uh) ≤ TVh(vh) ∀vh ∈ Vh , v
h = gh

ν,a on ∂Ω

Theoretical results

Question: why is the inpainting result with RT not “perfect”? most probably: non
uniqueness (cf Graph TV or Crouzeix-Raviart).

Theoretical results

2. Consistency.
Given a scale h > 0, define a family of discrete total variations for pixels of size h × h:

TVh(u) = min
{
h2‖q‖Zh

: F ∗hq = Dhu
}

= sup
{
h2 〈p,Dhu〉Yh

: ‖F hp‖∗Z ≤ 1
}

(with Dhu = (1/h)Du).

Theorem. Assume the weights of the convolutions defining F h satisfy∑
m,n

ξlm,n =
∑
m,n

ηlm,n = 1

for all h > 0 (in addition, uniformly bounded and with bounded support).
Then TVh “Γ-converges” to the total variation TV (u) as h→ 0.

; convergence of the discrete minimizers to solutions of the continuous problem.
So all the examples mentioned earlier “are”, in some sense, consistent total variations.
Now, by tuning appropriately ξ, η, one can hope to “learn” new ones in order to solve
best a given task.

Learning setting

We consider the class of total variation minimization problems (for various terms
G (u, g) corresponding to the “(ROF)” denoising or the inpainting problem):

min
Du=F∗q

λ‖q‖Z + G (u, g),

with the saddle-point formulation

min
u,q

max
p
〈Du − F ∗q,p〉 + λ‖q‖Z + G (u, g)

We want to optimize a “Loss”:

L(F) =
1

MNS

S∑
s=1

`(u∗s (F), ts),

which measures the error between some targets ts (e.g., “ground truth solutions”) and
the computed solutions u∗s for the data gs .

Learning setting

In the general form, we have a bilinear saddle point problem:

min
x

sup
y

g(x) + 〈Kx , y〉 − f ∗(y)

with g , f ∗ convex. To simplify we assume g , f ∗ strongly convex so that (x(K), y(K))
is uniquely defined (and continuous). We need to differentiate a Loss L(K) = `(x , y)
with respect to K.

The main difficulty with respect to the previous Homogenization setting is that before,
the Loss was depending on the minimal energy, whose derivative wr. K is simply x ⊗ y .

Classical method (now): Implement a 1st order algorithm to approximate x(K) with
some xn, n ≥ 1. Then “unroll” the iterations (x0, . . . , xn) and use automatic
differentiation and back-propagation to estimate ∇Kx

n.
Issues: strange dependence on x0, and difficult if the problem is large or requires too
many iterations (costs a lot of memory).

Alternative: even more classical method: sensivity analysis, adjoint state computed
by a “Piggyback” algorithm [Griewank, Faure ’03].

Learning setting

In the general form, we have a bilinear saddle point problem:

min
x

sup
y

g(x) + 〈Kx , y〉 − f ∗(y)

with g , f ∗ convex. To simplify we assume g , f ∗ strongly convex so that (x(K), y(K))
is uniquely defined (and continuous). We need to differentiate a Loss L(K) = `(x , y)
with respect to K.
The main difficulty with respect to the previous Homogenization setting is that before,
the Loss was depending on the minimal energy, whose derivative wr. K is simply x ⊗ y .

Classical method (now): Implement a 1st order algorithm to approximate x(K) with
some xn, n ≥ 1. Then “unroll” the iterations (x0, . . . , xn) and use automatic
differentiation and back-propagation to estimate ∇Kx

n.
Issues: strange dependence on x0, and difficult if the problem is large or requires too
many iterations (costs a lot of memory).

Alternative: even more classical method: sensivity analysis, adjoint state computed
by a “Piggyback” algorithm [Griewank, Faure ’03].

Learning setting

In the general form, we have a bilinear saddle point problem:

min
x

sup
y

g(x) + 〈Kx , y〉 − f ∗(y)

with g , f ∗ convex. To simplify we assume g , f ∗ strongly convex so that (x(K), y(K))
is uniquely defined (and continuous). We need to differentiate a Loss L(K) = `(x , y)
with respect to K.
The main difficulty with respect to the previous Homogenization setting is that before,
the Loss was depending on the minimal energy, whose derivative wr. K is simply x ⊗ y .

Classical method (now): Implement a 1st order algorithm to approximate x(K) with
some xn, n ≥ 1. Then “unroll” the iterations (x0, . . . , xn) and use automatic
differentiation and back-propagation to estimate ∇Kx

n.
Issues: strange dependence on x0, and difficult if the problem is large or requires too
many iterations (costs a lot of memory).

Alternative: even more classical method: sensivity analysis, adjoint state computed
by a “Piggyback” algorithm [Griewank, Faure ’03].

Learning setting

In the general form, we have a bilinear saddle point problem:

min
x

sup
y

g(x) + 〈Kx , y〉 − f ∗(y)

with g , f ∗ convex. To simplify we assume g , f ∗ strongly convex so that (x(K), y(K))
is uniquely defined (and continuous). We need to differentiate a Loss L(K) = `(x , y)
with respect to K.
The main difficulty with respect to the previous Homogenization setting is that before,
the Loss was depending on the minimal energy, whose derivative wr. K is simply x ⊗ y .

Classical method (now): Implement a 1st order algorithm to approximate x(K) with
some xn, n ≥ 1. Then “unroll” the iterations (x0, . . . , xn) and use automatic
differentiation and back-propagation to estimate ∇Kx

n.
Issues: strange dependence on x0, and difficult if the problem is large or requires too
many iterations (costs a lot of memory).

Alternative: even more classical method: sensivity analysis, adjoint state computed
by a “Piggyback” algorithm [Griewank, Faure ’03].

Piggyback Algorithm

First choose starting points (x0, y0,X 0,Y 0), θ ∈ (0, 1], τ, σ. Then for each k ≥ 0:

1. x̃ = xk − τK ∗yk , X̃ = X k − τ(K ∗Y k +∇x`(x
k , yk));

2. compute using automatic differentiation xk+1 = proxτg (x̃),

X k+1 = ∇proxτg (x̃) · X̃ ;

3. x̄k+1 := xk+1 + θ(xk+1 − xk), X̄ k+1 := X k+1 + θ(X k+1 − X k),

4. ỹ = yk + σKx̄k+1, Ỹ = Y k + σ(KX̄ k+1 +∇y `(x
k , yk));

5. compute using a.d. again yk+1 = proxσf ∗(ỹ), Y k+1 = ∇proxσf ∗(ỹ) · Ỹ ;

6. return to 1.

The blue iterations are a classical primal-dual method for computing x , y . The red
iterations are parallel iterations solving for the adjoint states.

Theoretical results

(AC., Pock, in preparation)

Theorem Assume that g , f ∗ are strongly convex and let (x , y ,X ,Y) be a fixed point
of the algorithm, for which ∇proxτg (x − τK ∗y) and ∇proxτ f ∗(y + σKx) exist. Then L
is differentiable at K and:

∇L(K) = y ⊗ X + Y ⊗ x .

The convergence of the algorithm requires slightly more regularity:

Theorem Assume that g , f ∗ are strongly convex, and in addition that g∗, f are locally
C 2,α for some α > 0. Then for τ, σ, θ properly chosen, the iterates (xk , yk ,X k ,Y K)
converge linearly to a fixed point where the previous result holds.

In practice: seems to work with less regularity...

Example: Learning for inpainting
I We train on 64 images of size 64× 64 with directions uniformly sampled between

[0, 2π] and we include random subpixel shifts. Inertial gradient descent.
I Learn on a training set, evaluate on a test set.
I Experiments with different numbers of filters and different symmetry constraints

for the filters.

(a) Input images gs

(b) Target images ts

Results

L = 2 L = 2 (s) L = 3 L = 3 (s)

L = 4 (s) L = 8 (s)

Data FD RT CD L = 2 L = 2 (s) L = 3 L = 3 (s) L = 4 (s) L = 8 (s)

Train 135 195 6.69 1.26 1.22 1.19 1.27 0.85 0.77

Test 134 194 6.33 1.63 1.45 1.29 1.29 0.87 0.82

Table: 105×MSE of handcrafted and learned filters for both training and test data.

(Note that transpose symmetry is almost automatically learned)

Comparison

0 2
3
2

2
s

20

25

30

35

40

45

50

55

60

PS
NR

FD
RT
CD
L = 2, n = 3 (s)
L = 3, n = 3 (s)
L = 4, n = 3 (s)
L = 8, n = 3 (s)

Target FD RT CD L = 2 (s) L = 3 (s) L = 4 (s) L = 8 (s)

Example: denoising

(a) noisy (b) forward diff. (c) RT (d) Condat

(e) “Shannon” (f) learned
(natural images)

(g) learned
(disk denoising)

(h) learned
(inpainting)

Figure: TV denoising: 7 variants

Conclusion

I Discretization of problems with discontinuous solution is very sensitive to the
setting and the choice of parameters;

I We can propose a framework where these parameters can be tuned to solve a
given task;

I We can implement a saddle-point algorithm which computes in parallel adjoint
states for derivation;

I Still needed/ongoing: understand “Piggyback” method for non-smooth problems.
Extend the framework to more singular energies (with constraints, curvature...)

Thank you for your attention

Conclusion

I Discretization of problems with discontinuous solution is very sensitive to the
setting and the choice of parameters;

I We can propose a framework where these parameters can be tuned to solve a
given task;

I We can implement a saddle-point algorithm which computes in parallel adjoint
states for derivation;

I Still needed/ongoing: understand “Piggyback” method for non-smooth problems.
Extend the framework to more singular energies (with constraints, curvature...)

Thank you for your attention

