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“Detection ” is the most frequent request made by researchers, industrials,

police, press, defence for exploiting images, images series, video among other
data.

“Detection ” means that an automatic decision must be made. A wrong decision

may entail costs and false alerts if it is falsely positive, and worse costs, accidents
and disasters if it is falsely negative.

Therefore [Detection requests a general decision theory controlling the “number
of false alarms” and giving tight detection thresholds

This theory exists, it uses simple (but sometimes subtle) probability arguments,
mixed with a fine control of image and video features
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Example 1: Playing Roulette with Dostoievski
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Example 1: Playing Roulette with Dostoevski

Extract from the novel « The gambler »:

That time, as if on purpose, a circumstance arose which, incidentally,
recurs rather frequently in gambling. Luck sticks, for example, with red and
does not leave it for ten or even fifteen turns. Only two days before, | had
heard that red had come out twenty two times in a row in the previous
week. One could never recall a similar case at roulette and it was
spoken of with astonishment.



Number of false alarms = expected number of occurrences of the event =
(number of tests) x (probability of the rare event)

K s 3 ’ 1 22
Why 227 The probability that red appears 22 times in a row of 22 is (%) :

namely about 10~°. The computation of the probability that this happens at
least once in a series of n trials is doable but a bit intricate.

We can, instead, directly compute the expected number of occurrence of the
event, or “Number of False Alarms” as

18 22
NFA(n) = (n — 21 — :
(n) = (n ) X (37)



Number of false alarms = expected number of occurrences of the event =
(number of tests) x (probability of the rare event)

18 22
NFA(n) =(n—21) x | — :
n) = (n =21 x (57
The event is likely to happen if its is larger than 1, which yields roughly n > 107.
Thus, we are led to compute how many trials a passionate gambler may have
done in his life.

Considering that a professional gambler would play roulette at 100 evenings
of 5 hours a year for 20 years, estimating in addition that a roulette trial may
take about 30 seconds, we deduce that an experienced gambler would observe
at the most, in his gambling life span, about n = 20 x 100 x 5 x 120 ~ 10°
trials. We deduce that 1 out of 10 professional gamblers can have observed such
a series of 22. Actually, Dostoevsky’s information about the possibility of 22
series is clearly based on conversations with specialists. The hero says:

I own a good part of these observations to Mr. Astley, who spends all of his
mornings by the gambling tables but never gambles himself.



Example 2: birthdays in a class



Example 2: birthdays in a class

e (', the number of n-tuples of students in the class having the same birthday
(this number is computed exhaustively by considering all possible n-tuples. If,
for example, students 1, 2, and 3 have the same birthday, then we count three

pairs (1,2), (2,3), and (3, 1)).

e [P, the probability that “there is at least one group of n alumni having the
same birthday”: P, is the probability of the event “C), > 17;

e p,, the probability that there is at least one n-tuple and no (n + 1)-tuple.

We are primarily interested in the evaluation of PP, and of the expectation EC,, as
good indicators for the exceptionality of the event.



Example 2: birthdays in a class

Proposition 3. The expectation of the number of pairs of alumni having the same
birthday in a class of 30 is ECy; = g%gg =~ 1.192. The expectation of the number of
n-tuples 1s EC,, = 365%1_1 (30). By an casy calculation, EC5 &~ 0.03047 and EC, ~

5.6 x 107,

Proof — Enumerate the students from ¢ = 1 to 30 and call £;; the event “students
¢ and j have the same birthday”. Also, call y;; = 1g,,. Clearly, P(E;;) = Ex; =
1/365. Thus, the expectation of the number of pairs of students having the same
birthday is

. 30 x 29 1 .
Ec.,Q—E( Z xﬁ)— Z Exi; = e A L1922

1<i<j<30 1<i<j<30

The general formula follows by analogous reasoning. [



Birthdays in a class: first the classic approach

_ 15 i—1 (30—25\ 29—i
1 HJ:O( 2 ) o E —o
P2 = 5= E : | | (365 — k)| = 0.678
36530 £ 7!
i=1 k=0
and, after a brave computation, P3 /& 0.0285. In the same way,

30 3i

L Hi'_l (30-33‘) 29— 2i (30 3i4+2— 2m) 29— 2i—1
P3 = 36530 Z = i > H 365 — k) + Z 2 H (365 — n)
i=1 n=>0

so that p; &~ 0.027998 and P, ~ 5.4 x 104,

EC; ~ 0.03047 and ECy ~ 5.6 x 107

Take home message: for the detection of rare events, the computation of the expectation of the event, or
Number of False Alarms is much easier than the computation of its probability of appearing, and it brings
more information.



The steps to solve a detection problem

e Define the background in which interesting objects will be detected: back-
ground model Hy

e A definition of the object to be detected (exceptional under Hy)
e Make an a priori count N;.s of the number of detection tests
e After each test of the presence of the object, compute Py, (observed)

e Deduce the Number of False Alarms of the test,
N F A(observed): = #(tests) x P, (observed)

o If NI A(observed) is small, detection. Reliability of the detection mea-
sured by its NFA.



An aparte: Statistics in the wild, or how to fight illusory detections



Statistics in the wild, or how to fight illusory detections

Observations made by Dr Gastaldi and two other doctors (June 2020):

"For the past few weeks, all three of us have been prescribing this treatment to all our patients with
coronavirus. For my part, this represents more than 200 patients. | have only had two serious cases that
required hospitalization and have since been discharged. Obviously, this is not a multi-center,
randomized study, but these are very interesting results. Based on the known data on the disease, out
of at least 200 cases, we should have had at least two deaths and about 40 hospitalizations.”

Exercise: finding on the internet the mortality rate among symptomatic patients and the number of
medical doctors in France, compute the NFA of this event (> 200 saved patients and no death) and
deduce how many such medical « discoveries » may have been done.

https://www.femmeactuelle.fr/sante/news-sante/coronavirus-trois-medecins-generalistes-pensent-avoir-
trouve-un-traitement-contre-le-covid-19-2093814



https://www.femmeactuelle.fr/sante/news-sante/coronavirus-trois-medecins-generalistes-pensent-avoir-trouve-un-traitement-contre-le-covid-19-2093814

Solution by Florian Laborde

Il y a en France plus de N, = 100000 médecins généralistes. Méme s’ils n’ont pas tous une exposition
équivalente aux patients on considere qu’ils ont tous un nombre élevé de patients distincts. La crise du Covid
19 a un taux empirique de mortalité d’au moins t = 2% en France, en considérant que au moins toutes les
personnes symptomatiques sont au moins des cas avérés de Covid. Le Dr Gastaldi se base sur une analyse de
taille 7" = 200 patients sur lesquels il ne trouve aucune mortalité parmi les asymptomatique traités par ses
soins. On se demande si ce test est significatif ? Combien de fois une fausse alarme de ce type avec cette
taille d’échantillon est-elle possible en France ? i.e: Combien y-a-t-il de traitements miracles ?

N FA(nmedecins) = (1 — t)T x (n —199)

En effet, on regarde la probabilité que sur 200 patients consécutifs aucun ne décede. Indépendamment la
probabilité de survie est de 98% (1- taux de mortalité). C’est donc une Bernoulli de parametre B(0.98,200) a
cela on corrige par le nombre de médecins qui sont suceptibles de faire une expérience similaire N, = 100000.
D’ou:
NFAN.) = (1—t)T x (N =T — 1) =0.98%00 x (10° — 199) = 1755

LLe nombre de fausses alarme est donc d’environ 1755. Il y a donc environ 1750 médecins en France qui
en faisant un traitement quelconque n’ont relevé aucun déces sur un échantillon de 200 patients. On
peut se demander combien de patients il faudrait prendre pour que |’expérience soit pertinente a € = 1 pres ?
Il faudrait environ 650 patients sans déces. (Cela pourrait arriver une fois en France statistiquement sans que
ce soit significatif).



Perception analysis implies making statistics « in the wild » (a
posteriori design of the testing set)

Danger of ignoring the number of tests to evaluate a number of false alarms (NFA), (also called per family
error rate (PFER))

Neglecting this fact leads to discover_crabs on Mars!

Journey to the Surface of the MARS

Mars Exploration Rover

4916



Statistics in the wild, or how to fight illusory detections

Danger of ignoring the
number of tests to evaluate
a number of false alarms
(NFA), (also called per family
error rate (PFER))

Neglecting this fact leads to
discover gods in the ocean!

The image by photographer
Mathieu Rivrin taken on
January 30, 2021 shows the
storm Justine with a face that
could be that of the god of
Greek mythology Poseidon
(Neptune for the Romans).

14917




First real example : image forgery detection

(Fake news debunking, work in collaboration with Agence France Presse)



Forgery detection




The cue to forgery detection is the number of zeros in a JPEG bloc.
Each digital image is divided in 8x8 blocs. The high frequencies in
each bloc are put to zero by JPEG: this allows one to retrieve the
position of the blocs and therefore the original JPEG grid.

But if the image has been manipulated in parts, the JPEG grid will
generally be shifted. Thus forgery detection amounts to find clusters
of blocs where the grid is not aligned with the general grid.

[—26 -3 —6 2 2 -1 0 0
0 -2 -4 1 1 0 0 O
-3 1 5 —1 -1 0 0 O
B— -3 1 2 -1 0 0 0 O
1 o o0 o0 O o0 0 O
o o0 0o o0 O 0 0 O
o o o0 o0 0 000
- o o0 o0 0 0 0 0 0]




Forgery detection

e Background model: each pixel votes for one of the 64 possible JPEG grids.
At taxi driver distance larger than 8 pixels, the votes are i.i.d. uniform
with probability 1/64 for each grid

e Fvent : in a window containing n votes, more than & points distant by
more than 8 from each other, vote for the same grid

o Number of tests= #(tested windows) x (#(block sizes)



Selecting the grid by the number of zeros

The number of zeros is larger
when a 8x8 block is aligned
with a previous JPEG
compression grid




The tail of the binomial law

Let Xq....,X,, be 1i.d. Bernoulli variables, that is, independent variables such
that X; € {0, 1} and

PX;=1=p, P[X;=0=1—0p.

Weset S, = X;+---+X,,. Thenfor 0 < k <n

; n b n! . o
P[S, = k| = (k)pk(l —p)"F = Hin — k)’p"’(l —p)" k.

This law is called the binomial law with size n and parameter p and we denote by
B(n,p) the probability distribution defined by

n!

)n—k
kl(n — k) '

pr. = P(L—p



The tail of the binomial law

The mean and variance of the binomial law B(n, p) are respectively np and np(1—p).
We now consider the “tail of the binomial law”
T

n i n—i
B(n,k,p) = Z P (1—p)" .

i—=k

This tail measures the probability that, among n tests, the observed number of
variables X; with value 1 is above k. As soon as k exceeds significantly its expectation
np, we can expect a detection.



The tail of the binomial law

Let us suppose that we are observing a square patch of an image where the
number of votes for a given valid grid origin is counted at a distance of eight pixels.
Let us say that & votes are counted for that valid grid among a total of n votes.
Under the null hypothesis Hy, votes for the given grid origin become Bernoulli
random variables with probability é. So under Hy, the number of votes becomes
a random variable K and, given the independence of votes (at distance larger than
eight), it follows a binomial distribution of parameter p = é. Thus,

P(K > k)= B(n, k,p) = i (n.)pj(l -p)"

=k \J



Thus, every square window of a X X Y pixels image is included in the
family of tests and the 64 grid origins are tested for each one. Then, the number of
tests can be approximated by

Ny =64- XY - VXY, (10.3)

where v/ XY gives a rough estimation of the possible window sides, and XY gives
the number of possible positions for the square windows of a given size. All in all,
given a window to be analyzed, the grid origin with the maximum of votes is selected
and its number of votes at distance eight pixels is counted. Then, the NFA is given
by

NFA =064- XY - VXY - B(n, k,p). (10.4)






NFA= 2.E-86







Test the method here:

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000073



https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000073

Real example 2: LSD, Line Segment Detector
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Straight edges in images

e Background model: the gradient orientation at each pixel is i.i.d. uniform
on [0, 27]

e Event: in a rectangle r, at least £ among n pixels are aligned up to some
precision p with the vector normal to the rectangle

e Number of tests: number of pairs of pixels in an image : (MN)?

¢ NFA(??" kp) — (A-[N)QB(TL k‘.p) = (AIA)Q Cip ( ])n—l



Read the paper, have the code and test the online
demo on any image here

LSD: a Line Segment Detector
2012-03-24 - Rafael Grompone von Gioi, Jérémie
Jakubowicz, Jean-Michel Morel, Gregory Randall



https://www.ipol.im/pub/art/2012/gjmr-lsd/
https://www.ipol.im/pub/art/2012/gjmr-lsd/

Real example 3: Detection of dot alignments



Real example 3: Detection of dot alignments:
Using first LSD and then alignment of lines (which are dots in the dual

space) leads to the detection of vanishing points and of the horizon

e

1.5F

0.5}




Dot alignments

e Background model: in each tested rectangle, the dots are uniformly spread
(uniform Poisson point process)

e Event : in a rectangle r of some width divided in ¢ uniform cells, at least
b(r,c,x) cells are occupied by some dot

e number of tests = #(pairs of dots)x #(widths)x #(cell aspect ratios)

l..
[ ]

. :’.?.:




Dot alignments
e Background model: in each tested rectangle, the dots are uniformly spread
(uniform Poisson point process)

e Event : in a rectangle r of some width divided in ¢ uniform cells, at least
b(r,c,x) cells are occupied by some dot |

e number of tests = #(pairs of dots)x #(widths)x #(cell aspect ratios)

N(N —1 N(N —1
Niests = (2 \wie - (2 )WLV, (1.11)

The NFA of the new event definition is then

NFA4(r, R, ¢,x) = Ntests-P[b(r,c,X)zb(r,c,x)}n(R,X):n*(R,X)}

_ N(N2_ 1)VVLC - B(c,b(r,¢,x),pm(R, ). (1.12)




A set C of different values are tried for the number of boxes ¢ into which the rectangle
is divided, and the one producing the lowest NFA is taken. Thus, the number of
tests must be multiplied by its cardinality #C = C. In practice we set C' = /N
and that leads to

N(N —1 N(N —1
Niests = ( > Jwre = M 5 )W IVN. (1.11)
The NFA of the new event definition is then

NFA4(r, R,¢,x) = Niests - P [b(’r, ¢, X) > b(r,c,x) | n(R,X) = n*(R,x)}

— N(]\;— 1)WLC‘ - B(c, b(r,c,x), p1(R, C)) (1.12)
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c
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\,/ The probability of one point falling in one of the boxes is py = 5 , where
Sp and S}, are the areas of the boxes and the local window respectively. Then, the
probability of having one box occupied by at least one of the n*(R,x) points (i.e.,
of an occupied box) is

pi(R,¢)=1— (1—po)™ B>, (1.9)

We will denote by b(r, ¢, x) the observed number of occupied boxes in the rectangle
r when divided into ¢ boxes. Finally, the probability of having at least b(r, ¢, x) of

the ¢ boxes occupied is
B(c,b(r,e¢,x), p1(R, ¢)). (1.10)















Read the paper, have the code and test the online demo on any
image here

An Unsupervised Point Alignment Detection Algorithm (2015), www.ipol.im
José Lezama, Gregory Randall, J.M.M., Rafael Grompone von Gioi



https://www.ipol.im/pub/art/2012/gjmr-lsd/
https://www.ipol.im/pub/art/2015/126/
http://www.ipol.im/

Theory:
A general definition of NFA
How to estimate the binomial tail

The interpretation of multiple detections : nonmaxima suppression



A general definition of NFA

Definition 2. /73] Given a sel of random variables (Xi)z'E[l,N] with known distri-
bution under a null-hypothesis (Hy), a multi-test function f(i,x) is called an NFA
if it quarantees a bound on the expectation of its number of false alarms under (H),
namely:

Ve > 0,E[#{i, f(i, X;) <e}] <e.

To put it in words, raising a detection every time the test function is below £
should give under (H,) an expectation of less than e false alarms. An observation
X; is said to be “e-meaningful” if it satisfies [(i,x;) < &, where ¢ is the predefined
target for the expected number of false alarms. The lower f(i,x) the “stronger” the
detection.

[73] A-contrario detectability of spots in textured backgrounds B Grosjean, L Moisan
Journal of Mathematical Imaging and Vision 33 (3), 313-337



A general definition of NFA

A common way to build an NFA is to take

fli,x;) = NPy (X; > x3) (2.3)

or
.f(?:axi) - PJP'Hn(‘Xil > ‘Xil)a (24)
where N is the number of tests, 7 goes over all tests, and x; are the observations
which excess should raise an alarm. These test functions are typically used when
anomalies are expected to have higher values than the background in the first case,
or when anomalies are expected to have higher modulus than the background. If
for example the (X;) represent the pixels of an image, there would be one test per

pixel and per channel. Hence N would be the product of the image dimension by
the number of image channels.



A general definition of NFA

Proposition 4. Let (X;)1<i<y be a set of random variables and (n;)1<i<n a set of
positive real numbers. Then the function NFA(i,z;) = n; - P(X; > x;) is an NFA as
. . N 1 ; - af — ) el

soon as ) ., a =1 and in particular if n; = N for all i. As a consequence, for
any multi-dimensional random vector X;, if g(X) is any real valued function, then
the function

(i, z;) = NPy, (9(X;) > x;) (1.7)
1s an NFA.

Ve > 0,E[#{i, f(i, X;) <e}] <e



Let us interpret Proposition 4. It basically says that the multiple test NFA (7, X;) <
g, 1 <11 < N, is controlled by £, in the sense that under H, (naive model) there
is no more than ¢ false detections on average. It can be related to the Bonferroni
strategy for multiple tests in the following way. Since each test NFA(7, X;) < ¢ has

a confidence level a; = =, (as a consequence of Lemma 1), the probability of having
T
at least one false alarm is

N
o = P(3i, NFA(?X)<5)<ZPNPA1X)<E gz E. (2.8)

i=1



Estimating the binomial tail

A?FA(I, kun) - Artest P [St 2 k]:

where
I
S = E X;
i=1

X; are independent Bernoulli random variables with parameter p

!
[\ . .
. o ! i I—i
B(lk.p) =) (?. p'(l—p)
i=k N

In this estimation problem, p is fixed, [ is rather large, and k in excess with respect
to its expected value pl since we look for meaningful events. The number of tests
usually will be very large and the NFA is interesting mainly when it is smaller than

1; so we are primarily interested in good estimates of B(l, k, p) when this quantity
is very small. There are several tools available to do so.



Estimating the binomial tail

Proposition 9. Lel X;, 1 = 1,...,1 be independent Bernoulli random variables with
parameter ) < p < ll and let S; = Zizl X;. Consider a constant p < r < 1 or a real
Junction p < r(l) < 1. Then B(L,k,p) = P[S, > k| salisfies

(r — p)? log
Slud) —tlogP|[S; > rl < O(——), 3.2
St) —HlogPlsizr] < L0 (3.2

1—p
0g 1
(Hoeffding-bis) —1logP[S;>7rl] > (r—p)* T ’;p + O(?), (3.3)
r(l) — n)?

(Central limit) —3logP[S; > r(l)l] ~ (;((l)——}f)) it (r(l) — p)is 5—>_OZ@3’4)
(Hoeffding) —1logP[S;>rl] > r log% + (1 —p)log T ;, (3.5)
(Large deviation) —1logP[S;>7rl] ~ 7 log% + (1 —p)log - ;, (3.6)

where the last equivalence holds when r is fized and | tends to infinity.



Non maxima suppression of multiple detections

Noisy square, meaningful alignments, maximal meaningful alignments
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Anomaly detection in any image

Anomaly detection in any image

e Background model: Here, huge variety of (non uniform) backgrounds.
Hence, detection made after background subtraction in the residual noise
vmage. This noise image becomes the background model.

e [went: a block in which all pixels have a residual larger than ¢ x o, where
o is the std of the residual noise (Reed-Xiaoli)

o Number of tests = #(pixels)x #(scales)

How to Reduce Anomaly Detection in Images to Anomaly Detection in Noise
2019-12-08 - Thibaud Ehret, Axel Davy, Mauricio Delbracio, Jean-Michel Morel



http://www.ipol.im/pub/art/2019/263/

Anomaly detection in any image
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“Novelty (or anomaly) detection is the task of classifying test data that differ in some respect
from the data that are considered “normal”. This may be seen as “one-class classification”, in
which a model is constructed to describe “normal” data. The novelty detection approach is
necessary because the quantity of available “abnormal” data is insufficient to construct explicit
models for non-normal classes. Detection must work even in a single image with a single
anomaly.”

A review of novelty detection (2014) Marco A.F. Pimentel, David A. Clifton, Lei Clifton, Lionel Tarassenko /4961



Anomaly detection in any image

Examples of industrial images with anomalies to detect. From left to right a suspicious
mammogram, an undersea mine, a defective textile pattern and a defective wheel

“Novelty (or anomaly) detection is the task of classifying test data that differ in some respect
from the data that are considered “normal”. This may be seen as “one-class classification”, in
which a model is constructed to describe “normal” data. The novelty detection approach is
necessary because the quantity of available “abnormal” data is insufficient to construct explicit
models for non-normal classes. Detection must work even in a single image with a single

anomaly.”
A review of novelty detection (2014) Marco A.F. Pimentel, David A. Clifton, Lei Clifton, Lionel Tarassenko
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e Decompose the image u into all of its 8 x 8 patches P

e Find for each patch P the 16 most similar patches P;, i« = 1,...,16 (located
elsewhere in the image)

n : 2
e Find the best estimate of P from the P; according tcp — %Zexp (_w) P 0

h?




Anomaly detection in any image

e Reconstruct an normal image model u by aggregating all patch estimates (a
simple mean)

Self-similar part scale O




Anomaly detection in any image

e Compute the noise difference N :=u — u

Non self-similar residue scale 0




Anomaly detection in any image

Detections in « noise », scale 0, min (log NFA) =-11,7




Anomaly detection in any image

e Reconstruct an normal image model u by aggregating all patch estimates (a

simple mean)
Self-similar part scale 1




Anomaly detection in any image

e Compute the noise difference N :=u — u

Non sel

f-similar residue scale 1
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Anomaly detection in any image

Detections in « noise » scale 1, min (log NFA) = -26.2




Anomaly detection in any image

e Reconstruct an normal image model u by aggregating all patch estimates (a

simple mean)
Self-similar part scale 2




Anomaly detection in any image

e Compute the noise difference N :=u — u

Non self-similar residue scale 2




Anomaly detection in any image

Detections in « noise » scale 2, min (log NFA) =-11,7




Anomaly detection in any image

Detections in « noise » scale 3, min (log NFA) =-19,9




Sanity check 1 : No detection
white noise!

Scale 0
Minimum log10NFA region

Minimum log10NFA region
Scale 2

Minimum log10NFA region

Minimum log10NFA region
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Sanity check 2




Sanity check 3: working on the residual increases the « NFA gap » between false alarms and
detections

Figure 5. The region represented by the large white spot in the left
image is a tumor. The proposed self-similarity anomaly detector
successfully detects the tumor with a much significant NFA than
the one from Grosjean and Moisan [24] (an NFA of 10~12 versus
their reported NFA of 0.15), while making fewer false detections.

B. Grosjean and L. Moisan. A-contrario detectability of spots in textured backgrounds. Journal of Mathematical
Imaging and Vision, 33(3):313-337, 2009. 14976



Example on areal scene with no ground truth

Left: Picture of textile, right: The residual for pixels and the detections. All the textile impurities are highlighted on the
residual.




Example on a real scene with no ground truth

Left: Input image, Right: detections with pixels. The method successfully detects a tank hidden in the landscape. This example is one of the examples
provided by ltti et al.
L. Itti and C. Koch. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision research, 2000.
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Aitor ArroLA, Jean-Michel MoreL, Yannis KoLopzies, Unsupervised anomaly detection on mass-produced i



Thank you, questions?



Cloud detection in time series of satellite images

e Background model: the images are different (because of cloud cover): in
two successive registered images of the ground, the difference of gradient
orientation is uniform i.i.d.

e Fwvent : a "large enough” 4-connected component of pixels where the sum
of differences of orientations is small enough

o Number of tests= #(pixels) x#(number of connected components)



Cloud detection in time series of satellite images

Local Image Comparison

Given two images u and v defined on the same domain 2 (of size X x Y'), and a set

of pixels R, we would like to know whether both images are similar in the region R.
To this aim, we will use the distance

Su,w

(R) = Z |Angle(Vu(w), Vo(w))|

- , (11.1)

namely the sum of all normalized gradient angle errors in R



Cloud detection in time series of satellite images
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Cloud detection in time series of satellite images

A contrario formulation

For a given region R, we need to decide whether the distance s, ,(R) is small
enough, indicating whether the corresponding parts of the images are similar or not.
We propose to use for this an a contrario formulation. A natural background model
Ho is that the gradient orientations at each pixel are independent random variables,
uniformly distributed in [—7, 7). (This will happen, for example, if one of the images
contains a cloud covering the region.) Following the a contrario framework, we will
define the NFA associated to a candidate region match as

NFA(u,v, R) = Ny - P| Sy, (R) < SW(R)}, (11.2)

where Sy, (R) is a random variable corresponding to the distance sy (R) for ran-
dom images U and V whose gradient orientation follow H,.



Cloud detection in time series of satellite images

But under Hg the
oradient orientations are uniformly distributed in all directions, which implies that
the normalized angle error at each pixel are independent random variables following
a uniform distribution in [0, 1]. As a result, Sy, (R) corresponds to the sum of |R| in-
dependent and uniformly distributed random variables taking values in |0, 1|. Thus,
Sy, (R) follows the Irwin-Hall distribution [149] and for a given s, with 0 < s < |R|,
we obtain:

H
IP[SHO(R) < s} — Wll' Z(—l)@'(“ﬂ) (s — i)l (11.3)

. [/
1=0

where |s] is the integer part of s and (Z’) is the binomial coefficient.



Cloud detection in time series of satellite images

tetrominoes

pentominoes hexominoes

Figure 11.2: Polyominoes of four (tetrominoes), five (pentominoes) and six (hex-
ominoes) elements. When rotations and reflections are not considered, there are 5
tetrominoes, 12 pentominoes and 35 hexominoes, as shown here. When rotations
and reflections are also considered distinct, there are 19 tetrominoes, 63 pentomi-
noes and 216 different hexominoes.




Polyominoes

The exact number b,, of

different polyomino configurations of given size n is not known in general, but there
are good approximations of this number [147]. In our case, it is enough to use an
estimate of the order of magnitude, so the approximate formula given in [147] is
sufficient for our needs. It reads

[871
bn ~ _7 1]_.4
o (1.4

where o = 0.316915 and 5 ~ 4.062570.
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Anomaly detection theory: Gaussian models and background subtraction

Detection in hyperspectral images

Matteoli, S. ; Diani, M. ; Corsini, G., A tutorial overview of anomaly detection in hyperspectral images

I. S. Reed, X.(iaoli) Yu, Adaptive Multiple-Band CFAR Detection of An Optical Pattern with Unknown Spectral
Distribution, IEEE Trans. Acoust. Speech Signal Process., 38(10) (1990) 1760-1770.



(G aussian vectors and the Mahalanobis distance

Definition 4. We say that x is a (non degenerate) Gaussian vector in RF if ¥ is
nondegenerate and if X has density

L B TS T (111)
(27)2 (det Xy) 2

fX(X) -

Conversely a random vector with this density has mean px and covariance matrix

S



The \* law

(G aussian vectors and the Mahalanobis distance

If zy,---z; are independent, standard normal random variables, then the sum of
their squares, Y ; , z7 is distributed according to the x? distribution with & de-
grees of freedom denoted as y2. The decay of the x7 law is rapid, as shown by its
probability density function

r2le s 0

—, T > 0;
flz; k) =§ 257 (%)

0, otherwise.

where I'(k/2) denotes the gamma function, which has a closed-form expression when
its argument 1s an integer.
Chi Square Distribution
0.30 4

—k=1
025 e

0.20 k=10
0.15
0.10

0.05 4

0.00



(G aussian vectors and the Mahalanobis distance

The Mahalanobis distance from a vector x = (x1, 29, z3, ..., ;) with respect to

a random vector x with mean pi,c = (j11, pta, j13, - . -, je)’ and covariance matrix ¥,

is defined by

Du(z) = /(z — p) T2z — ). (1.14)

The link with the x* law is as follows. If x ~ Ny (i, ¥4) is a random Gaussian
vector with expectation p, and positive definite covariance matrix >, then

x =: Bix ~ N(0, 1)

is a normal variable of dimension k£ and therefore
2 =112 9
DM(X; 4”-') = ||X|| ~ Xk

namely the law of the sum of £ independent normal laws of dimension 1.



(G aussian vectors and the Mahalanobis distance

Consequence : testing anomalies with respect to a Gaussian background

In short, the Mahalanobis distance between a Gaussian vector x and its expectation

follows a x? law with & degrees of freedom. Hence, if 0 < p << 1 is a fixed p-value
2 : 2

and xi., , denotes the 1 — p quantile of xj then

P [DiI(X“”) :j X?ﬂ;l p] =P = IP][X € AP]

where
AP — {'T € RleiI (mi I”) > Xf:;l F}

is by definition the anomalous region with p-value p.



Anomaly detection in hyperspectral images
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Figure 1. Spatial windows used in the RX implementation: outer demeaning window (red. solid line), outer covariance
estimation window (yellow. dashed line), guard window (blue, dotted line).
Matteoli, S. ; Diani, M. ; Corsini, G., A tutorial overview of anomaly detection in hyperspectral images

I. S. Reed, X.(iaoli) Yu, Adaptive Multiple-Band CFAR Detection of An Optical Pattern with Unknown Spectral
Distribution, IEEE Trans. Acoust. Speech Signal Process., 38(10) (1990) 1760-1770.



Anomaly detection in hyperspectral images
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Figure 1.7: For a 4 x 4 pixels expected target size, the guard window should be
at least of 7 x 7 pixels in order to not include target pixels in the background
parameters estimation windows. Figure borrowed from Matteoli et al. [70]

Matteoli, S. ; Diani, M. ; Corsini, G., A tutorial overview of anomaly detection in hyperspectral images

I. S. Reed, X.(iaoli) Yu, Adaptive Multiple-Band CFAR Detection of An Optical Pattern with Unknown Spectral
Distribution, IEEE Trans. Acoust. Speech Signal Process., 38(10) (1990) 1760-1770.



Anomaly detection in hyperspectral images
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Figure 2. Graphical interpretation in a two-dimensional space for the RX AD decision rule. The RX AD decision surfaces
are ellipsoids in the multidimensional space.

Matteoli, S. ; Diani, M. ; Corsini, G., A tutorial overview of anomaly detection in hyperspectral images

I. S. Reed, X.(iaoli) Yu, Adaptive Multiple-Band CFAR Detection of An Optical Pattern with Unknown Spectral
Distribution, IEEE Trans. Acoust. Speech Signal Process., 38(10) (1990) 1760-1770.



Anomaly detection in hyperspectral images
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Figure 4. Graphical representation of a non-homogeneous background condition. (a) spatial domain. (b) a simplified two-
dimensional spectral domain. The presence of multiple classes in the immediate vicinity of the PUT could prevent an
anomaly from being detected. In these cases the LNM is inadequate.

Matteoli, S. ; Diani, M. ; Corsini, G., A tutorial overview of anomaly detection in hyperspectral images

I. S. Reed, X.(iaoli) Yu, Adaptive Multiple-Band CFAR Detection of An Optical Pattern with Unknown Spectral
Distribution, IEEE Trans. Acoust. Speech Signal Process., 38(10) (1990) 1760-1770.



Anomaly detection in hyperspectral images
T ‘ iocally
isolated tree
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(a) (b)

Graphical representation of the detection of a local anomaly that is not anomalous in the whole scene. (a) spatial domain. (b)
simplified two-dimensional spectral domain. The scene reported contains a forest and a locally isolated tree. The RX sliding window
is represented in red. The samples captured by this window are pixels of a homogeneous background of grass, and hence the
locally isolated tree is detected even if it is not anomalous in the scene.

Matteoli, S. ; Diani, M. ; Corsini, G., A tutorial overview of anomaly detection in hyperspectral images

I. S. Reed, X.(iaoli) Yu, Adaptive Multiple-Band CFAR Detection of An Optical Pattern with Unknown Spectral
Distribution. IEEE Trans. Acoust. Speech Sianal Process.. 38(10) (1990) 1760-1770.



Anomaly detection in hyperspectral images
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(a) (b)

Figure 12. Graphical interpretation of the OSP concept. (a) a simplified three-dimensional spectral domain. The two
principal directions (dashed blue lines) that address the background have been identified by a linear transformation. (b)
The data have been projected onto the subspace orthogonal to the one spanned by these two identified background
directions. Along this third orthogonal direction (dashed blue line) the defectability of anomalies is clearly improved, as
the background has been nearly suppressed.

Matteoli, S. ; Diani, M. ; Corsini, G., A tutorial overview of anomaly detection in hyperspectral images

J. C. Harsanyi, C-I. Chang, Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal
Subsbace Proiection Approach. IEEE Trans. Geosci. Remote Sens.. 32(4) (1994) 779-785.
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Figure 13. Block diagram of the possible configurations allowed by the OSP approach presented here. After the SVD, the
background is suppressed by orthogonal projection. The energies of the corresponding images are represented that
show the effect of the background suppression. The yellow block is an optional step that can further improve the
performance by selecting the components that address the most anomalous pixels. These components can then be
processed by RX, either in a global or local application, providing in output the test statistic.

Matteoli, S. ; Diani, M. ; Corsini, G., A tutorial overview of anomaly detection in hyperspectral images

J. C. Harsanyi, C-I. Chang, Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal
Subspace Projection Approach, IEEE Trans. Geosci. Remote Sens., 32(4) (1994) 779-785.



Anomaly detection in RGB images by background subtraction and final detection in noise

How to Reduce Anomaly Detection in Images to Anomaly Detection in Noise
2019-12-08 - Thibaud Ehret, Axel Davy, Mauricio Delbracio, Jean-Michel Morel
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How to Reduce Anomaly Detection in
Images to Anomaly Detection in Noise

Anomaly detectors address the difficult problem of detecting automatically exceptions in a background image,

that can be as diverse as a fabric or a mammography. Detection methods have been proposed by the
thousands because each problem requires a different background model.

Anomaly detection cannot be formulated in a Bayesian framework: this would require to simultaneously learn
a model of the anomaly, and a model of the background.

(In the case where there are plenty of examples of the background and for the object to be detected, neural
networks may provide a practical answer, but without explanatory power). In the case of anomalies, we often
dispose of only one image as unique informer on the background, and of no example at all for the anomaly.

The problem can be reduced to detecting anomalies in residual images (extracted from the target image) in
which noise and anomalies prevail. Hence, the general and impossible background modeling problem is
replaced by a simple noise model, and allows the calculation of rigorous detection thresholds.

Our approach is therefore unsupervised and works on arbitrary images. The residual images can favorably be
computed on dense features of neural networks. Our detector is powered by the a contrario detection theory,
which avoids over-detection by fixing detection thresholds taking into account the multiple tests.



