

MILIND TAMBE

Director, Ctr for Research on Computation & Society, Harvard University

Director "Al for Social Good", Google Research India

Al & Multiagent Systems Research for Social Impact

Public Health

Conservation

Public Safety and Security

Optimize Our Limited Intervention Resources

Lesson #1: Achieving Social Impact and Al Innovation Go hand-in-hand

Public Health

Public Safety & Security

Stackelberg security games

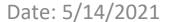
Lesson #2:

Partnerships with Communities, NGOs & Govt organization crucial

Empower non-profits to use AI tools; avoid being gatekeepers to AI4SI technology

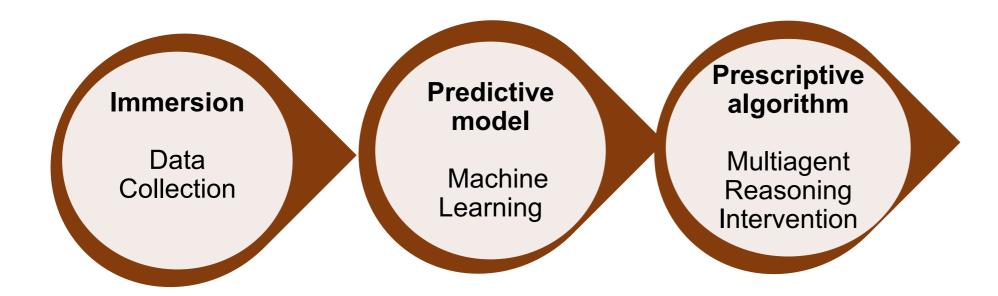
Wildlife

Conservation Society



Lesson #3:

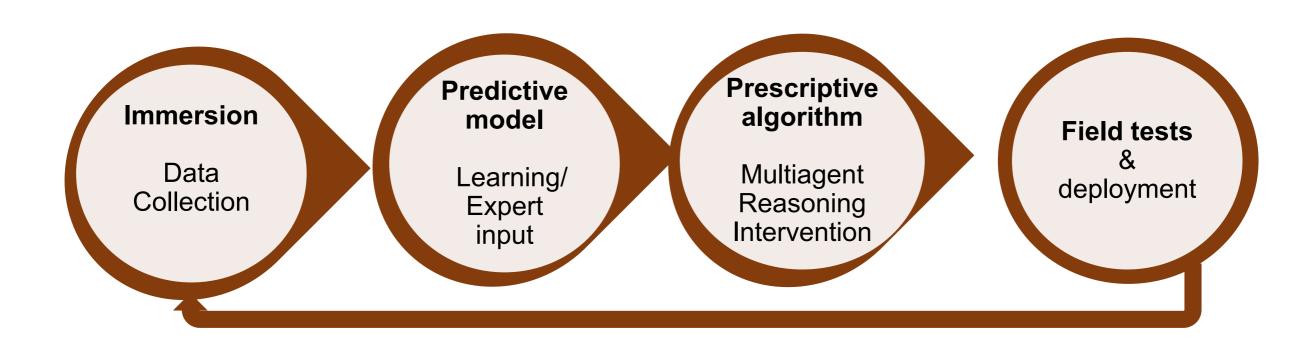
Data-to-deployment pipeline; not just improving algorithms



Lesson #3:

Data-to-deployment pipeline; not just improving algorithms

Field test & deployment: Social impact is a key objective



Outline

Public Health

- Health information dissemination: Social networks
- > Health program adherence: ML & Bandits
- COVID-19: Agent-based modeling

Conservation

- Cover papers from 2017-now [AAMAS, AAAI, IJCAI, NeurIPS...]
- PhD students & postdocs highlighted

Information dissemination & behavior change Optimizing Limited Intervention (Social Worker) Resources

Prevent HIV in youth experiencing homelessness: HIV 10x housed population

- > Shelters: Limited number of peer leaders to spread HIV information in social networks
- "Real" face-to-face interactions; not Facebook etc

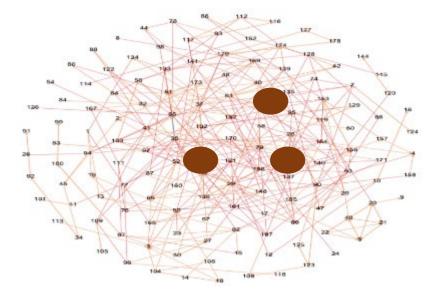
Influence Maximization in Social Networks

Given:

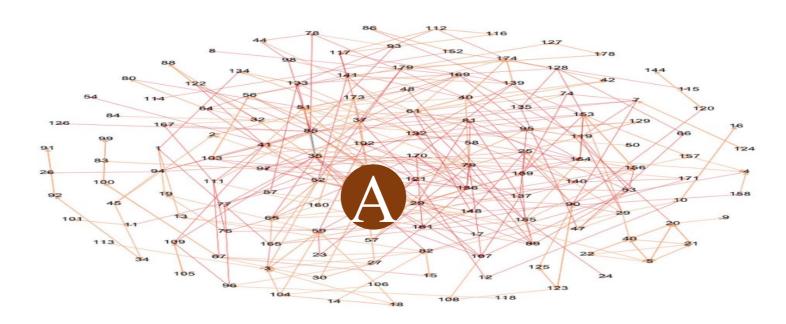
- Social network Graph G
- Choose K "peer leader" nodes
- Assume: Independent cascade model of information spread

Objective:

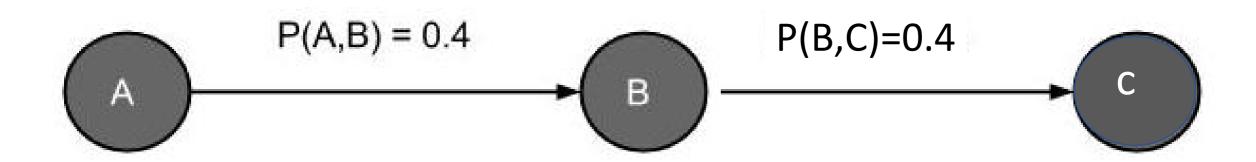
Maximize expected number of influenced nodes



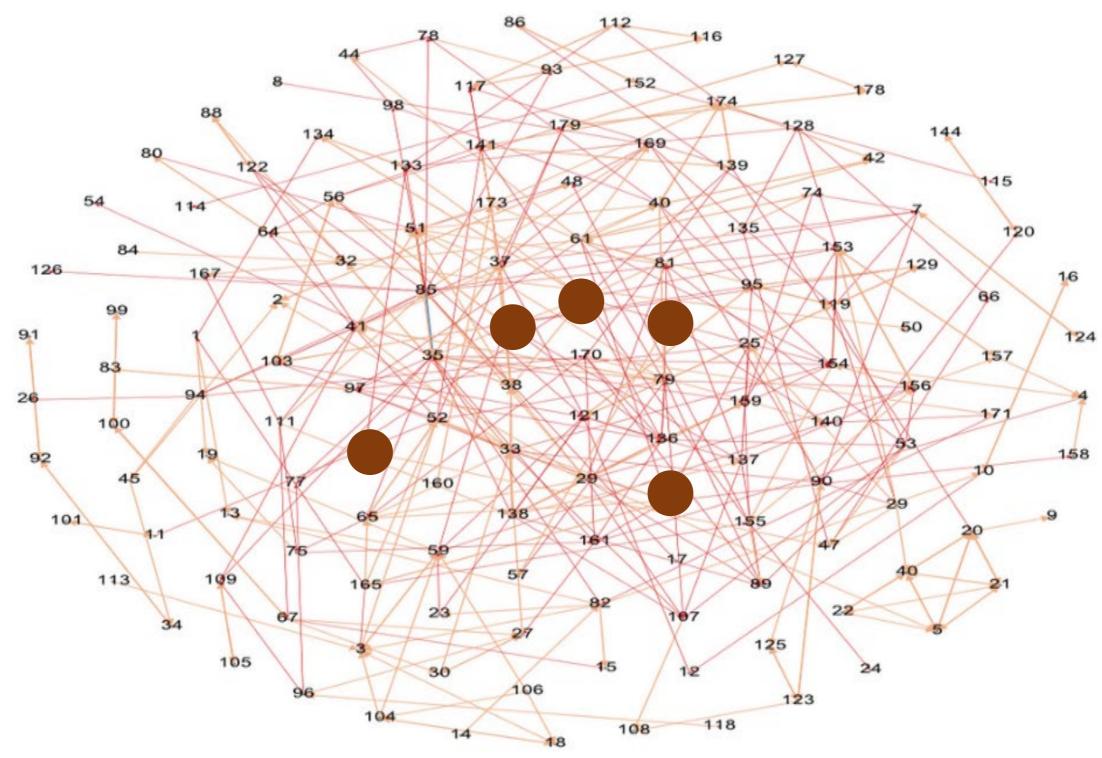
Independent Cascade Model



Propagation Probability (for each edge)



Influence Maximization (Budget = 5 nodes)



5/14/2021

Lesson #4:Embrace interdisciplinary research

Influence Maximization in Social Networks Three Key Challenges Combined Together

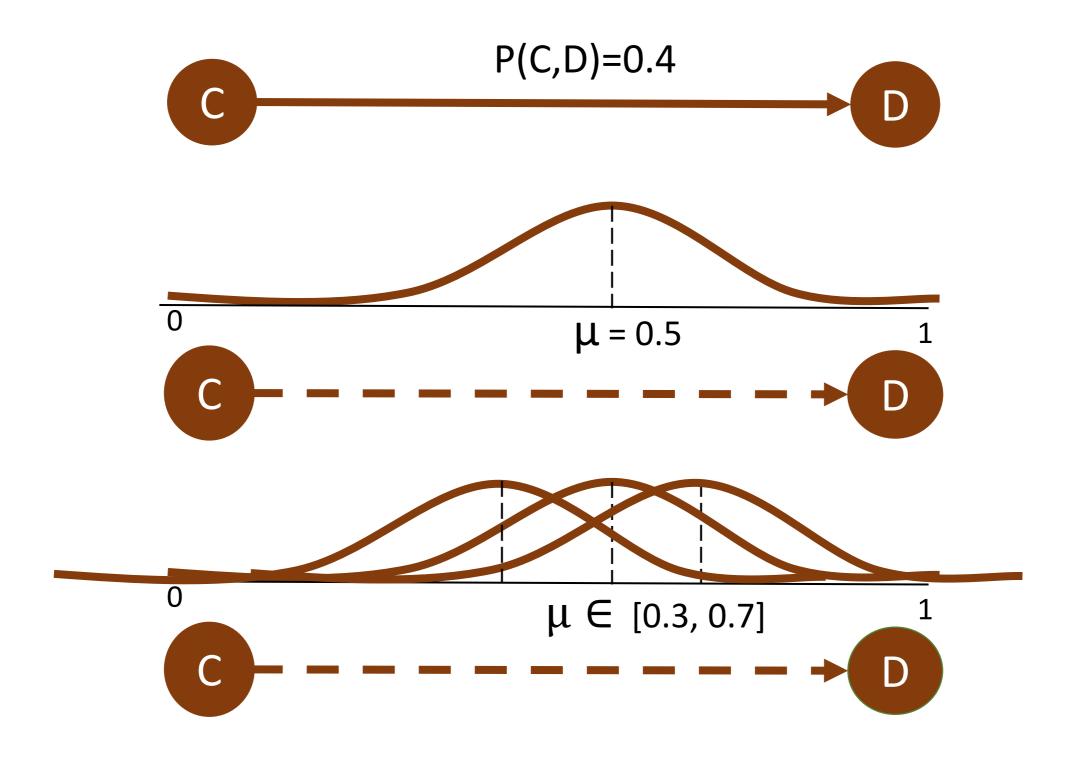
Research challenges in AI for social good?

Lesson #5: Lack of data & uncertainty is a feature (research challenge), not a bug

- Uncertainty in propagation probability over edges
- ➤ Unknown social network, limited query budget to uncover network
- Multi-step dynamic policies to handle peer leader "no shows"

Sketch some ways we solve these problems

Challenge 1: Uncertainty in Real-world Physical Social Networks



Robust Influence Maximization

(AAMAS 2017)

Worst case parameters: a zero-sum game against nature

$$\max_{x \in \Delta^{|P|}} \min_{\mu, \sigma} \sum x_p \frac{(Outcome(p))}{OPT(\mu, \sigma)}$$

Algorithm

Choose Peer Leaders $p \in P$ generating mixed strategy " $x \in \Delta^{|P|}$ "

VS

Nature

Chooses parameters μ,σ

HEALER Algorithm Robust Influence Maximization

(AAMAS 2017)

Iterative algorithm: Double oracle

Nature

_
Φ
Ö
Φ
\supset
Ę

Date: 5/14/2021

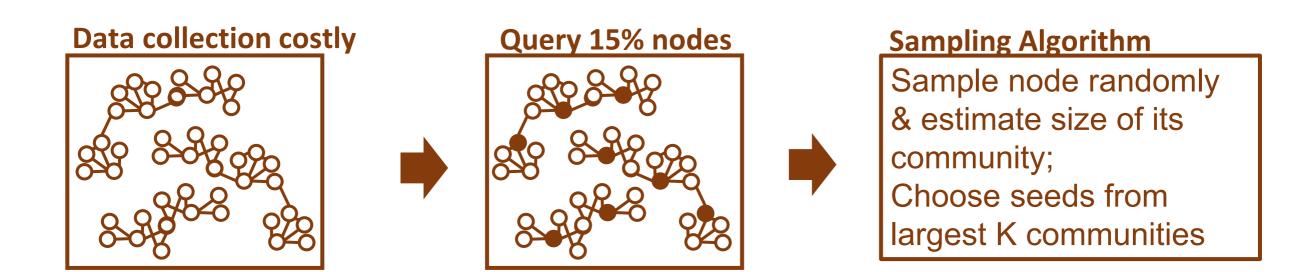
	Params #1	Params #2	Params #3
Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6
Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7

	Params #1	Params #2	Params #3
Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6
Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7

Influencer's oracle

1	Params #1	Params #2
Policy #1	0.8, -0.8	0.3, -0.3
Policy #2	0.7, -0.7	0.5, -0.5
Policy #3	0.6, -0.6	0.4, -0.4

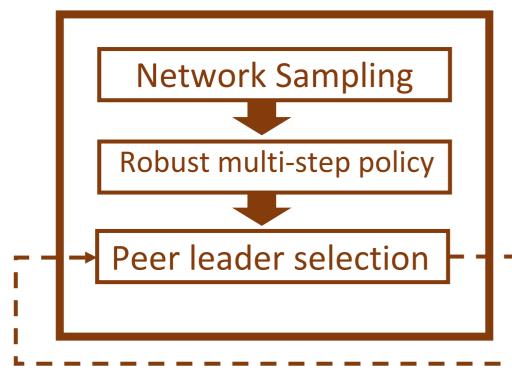
Challenge 3: Sampling Networks: Exploratory Influence Maximization (AAAI 2018)



- Query 15% of nodes in the population
- Output *K* peer leader nodes to spread influence
- Perform similar to *OPT*, best influence spread with full network

"Sampling-HEALER" **Pilot tests with Homeless Youth**

(IJCAI 2018)



Sampling-HEALER

I Observe peer leaders present/absent

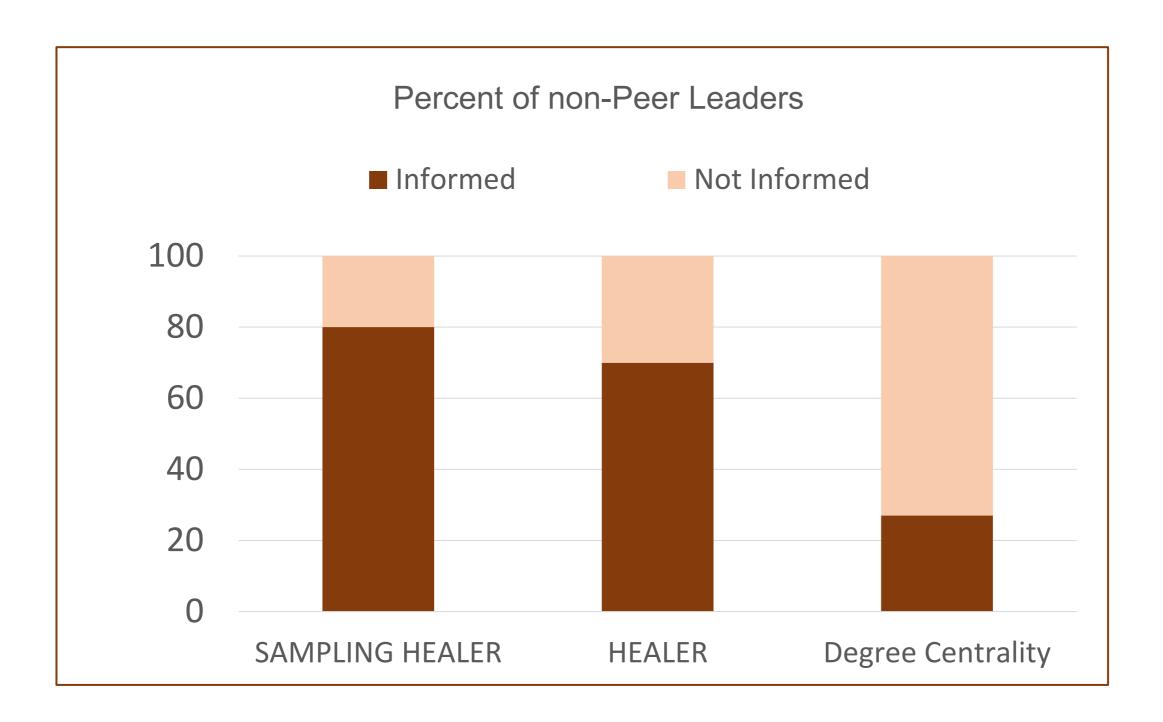
12 peer leaders

Sampling HEALER (Sampled Network)	HEALER (Full Network)	DEGREE CENTRALITY (Full Network)
60 youth	62 youth	55 youth

Results: Pilot Studies

(Journal of Society of Social Work & Research 2018)

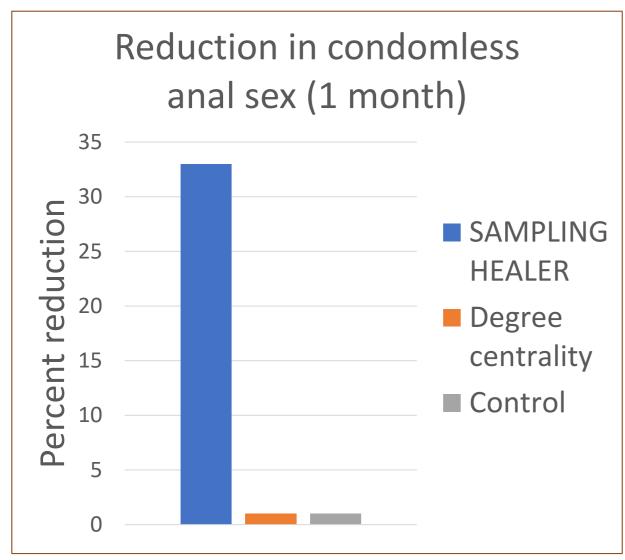
Yadav Wilder

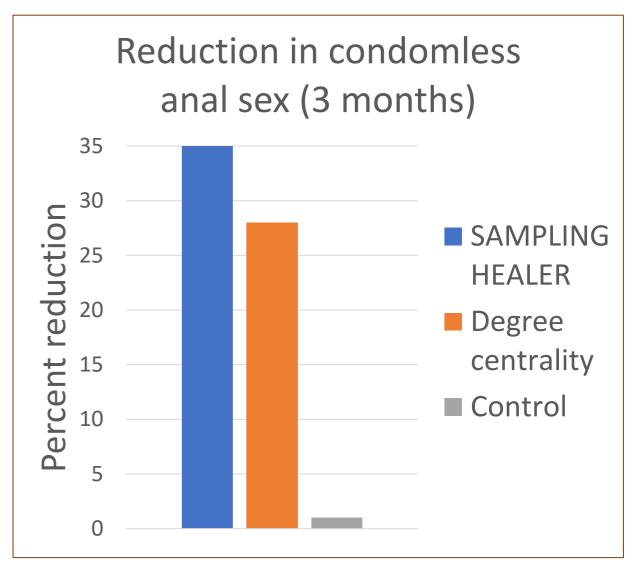


Results of 750 Youth Study [with Prof. Eric Rice] Actual Change in Behavior?

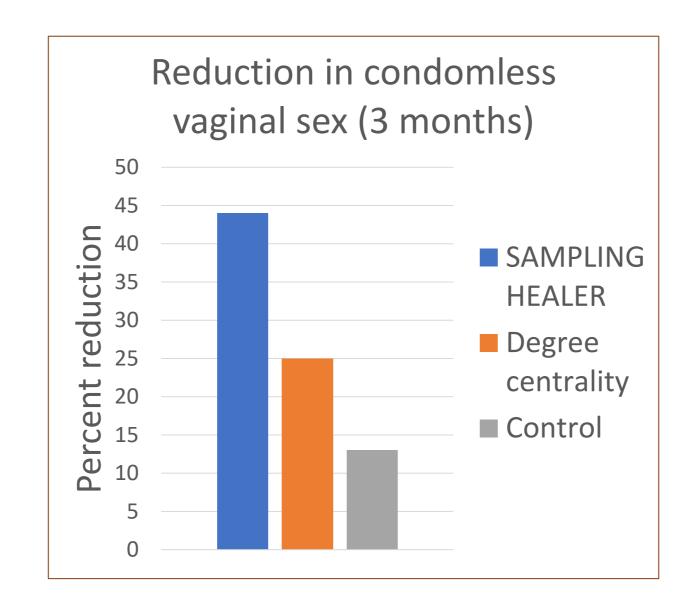
(AAAI 2021)

First large-scale application of influence maximization for public health





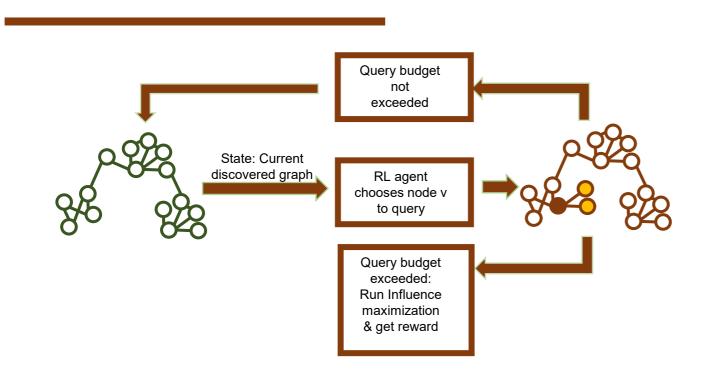
Results of 750 Youth Study [with Prof. Eric Rice]



What our collaborators are saying:

Next steps:RL for Influence Maximization in Social Networks

(with B. Ravindran & team, AAMAS 2020)



Network Family	Improve %
Rural	23.76
Animal	26.6
Retweet	19.7
Homeless	7.91

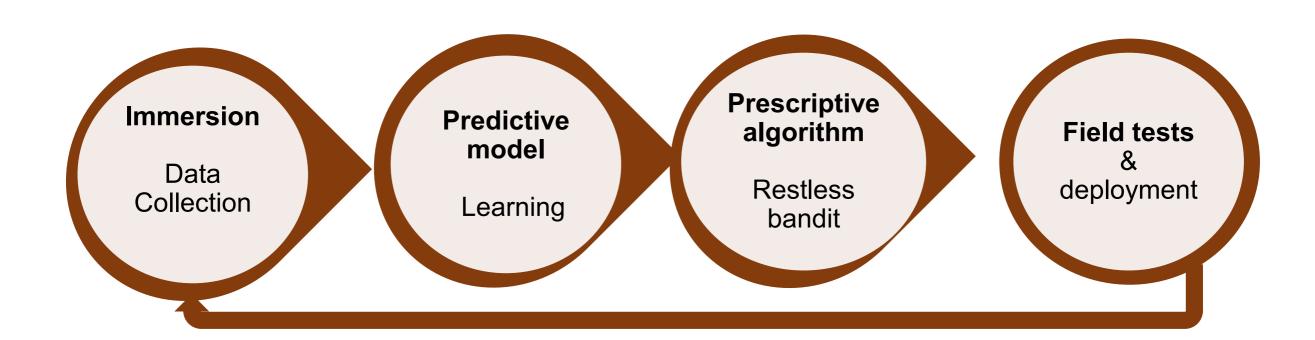
Outline

Public Health

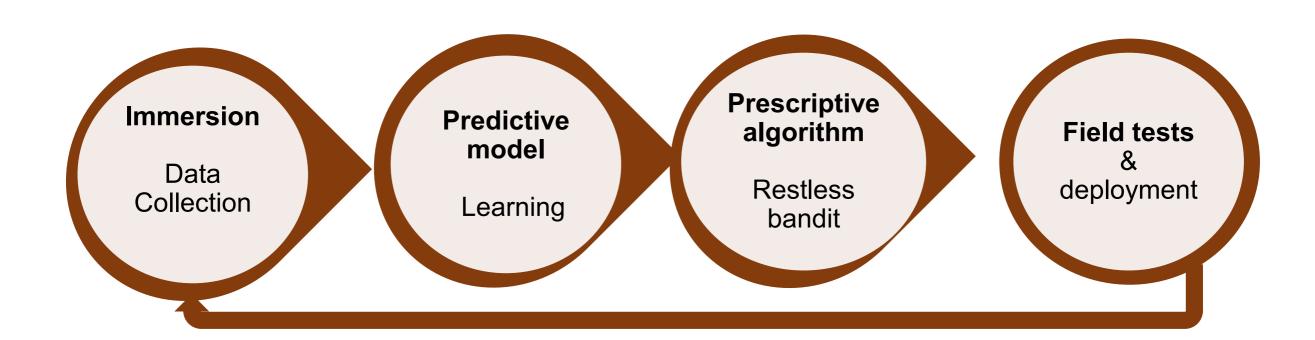
- > Health information dissemination: Social networks
- ► Health program adherence: ML & Bandits
- COVID-19: Agent-based modeling

Conservation

Intervention Reasoning: Active Adherence Monitoring



Intervention Reasoning: Active Adherence Monitoring



Health Program Adherence Maternal & Child Care in India

(IJCAI 2021)

Woman dies in childbirth every 15 min; 4 of 10 children too thin/short

18 Million women

Weekly 3 minute call to new/expecting moms

mMitra: Significant benefits 2.2 million women enrolled

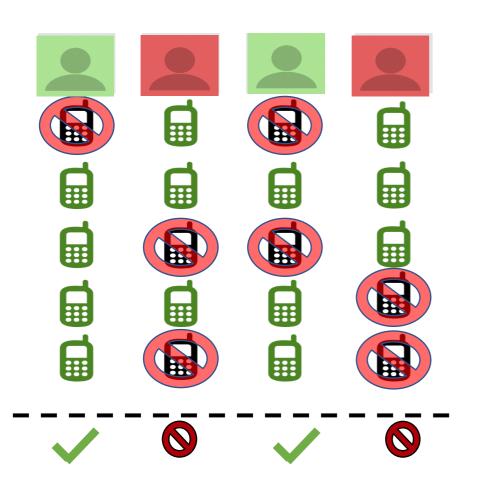
Unfortunately, significant fraction low-listeners or drop-outs

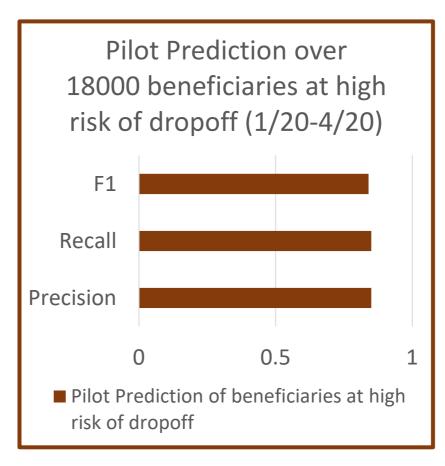
Passive Adherence Monitoring Maternal & Child Care in India

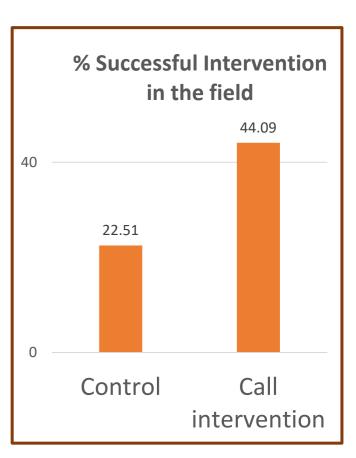
(with B Ravindran IIT Madras)

Classifier to predict beneficiaries drop out? So ARMMAN can focus interventions

- Results of pilot with 18000 beneficiaries: High precision, recall, accuracy
- Field trial with 8000 beneficiaries: Call intervention helps
- Prediction software in use to help 300,000 beneficiaries in mMitra







Passive Adherence Monitoring Preventing Tuberculosis in India

Killian

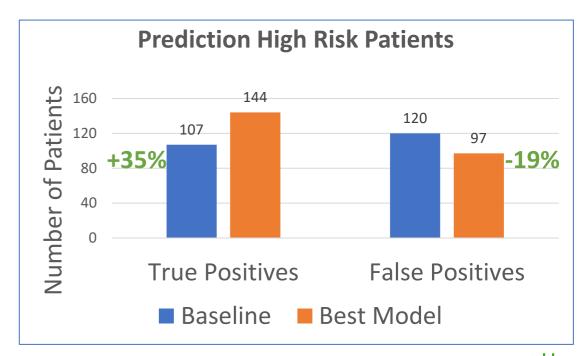
(KDD 2019)

Tuberculosis (TB): ~500,000 deaths/year, ~3M infected in India

Predict adherence risk from phone call patterns for early intervention?

TB Treatment 6 months of pills

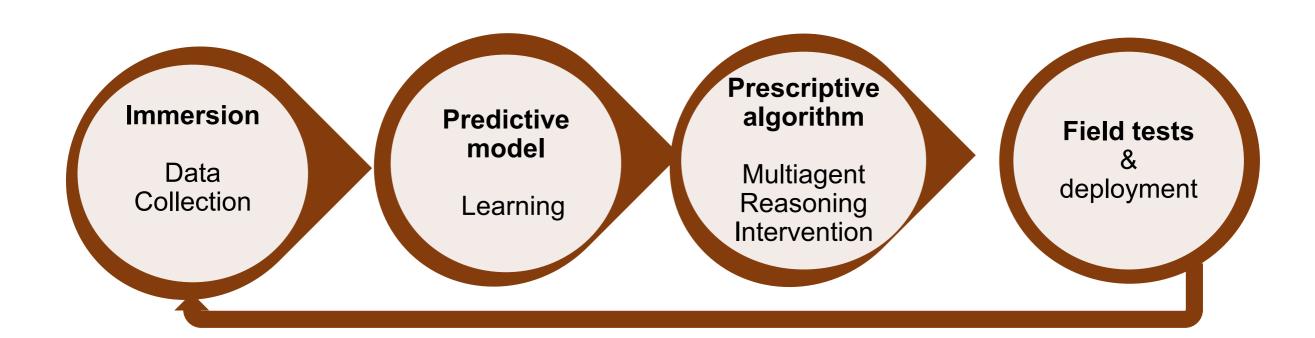
Track adherence via daily phone calls



Results Mumbai, India: everwel 15,000 patients, 1.5 Million calls

Date: 5/14/2021 29

Intervention Reasoning: Active Adherence Monitoring



Intervention Scheduling with Scarce Data: Active Adherence Monitoring

Mate

Killian

Challenge:

(NeurIPS 2020)

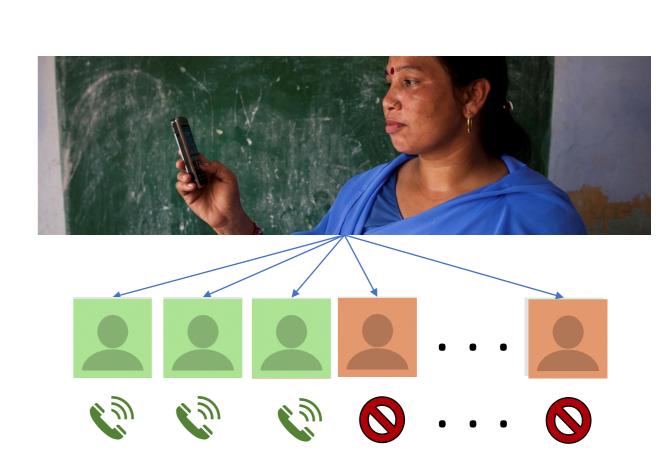
- Large number of patients (N)
- Can only call K patients per day.
- Which K?

Date: 5/14/2021

Approach: "Restless bandit"

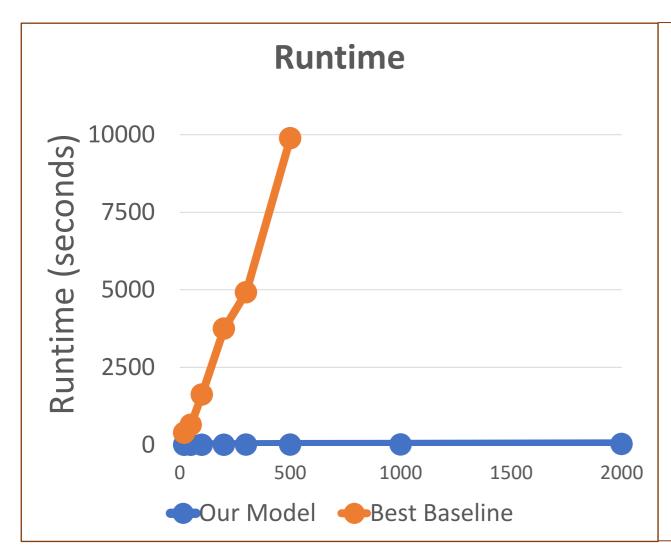
- Each arm (patient) latent state {0, 1}
- 0= not-adhering; 1= adhering

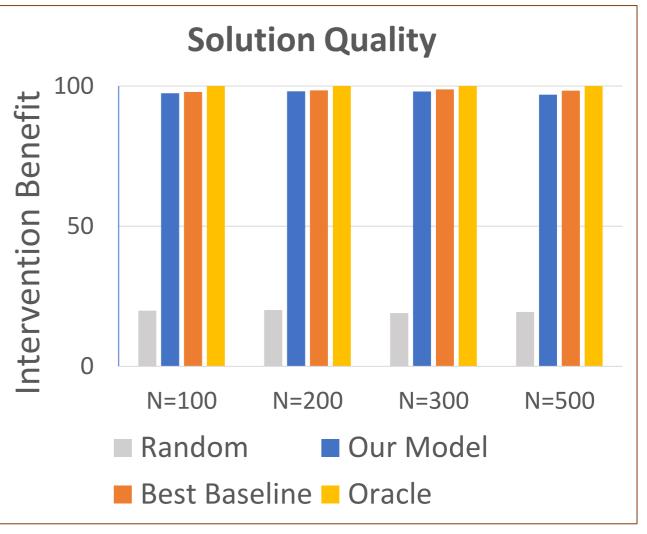
Goal: Policy for K patients to call per day



New Fast Algorithm: Collapsing Bandits

- Orders of magnitude speedup with no solution quality loss
- ORANGE = Best baseline
- Blue = Our model

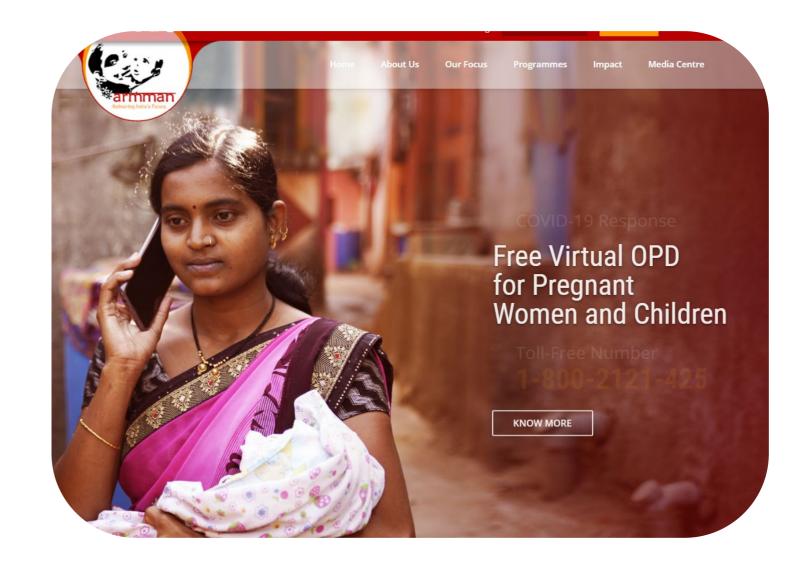




New Directions in Restless Bandits

Restless bandits for intervention:

20000 subject trial



Outline

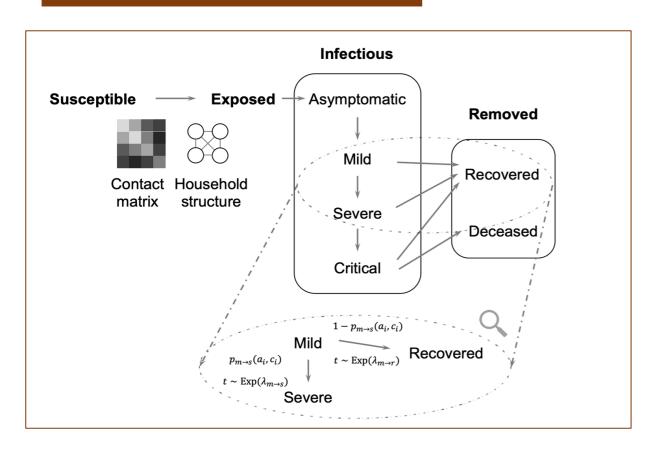
Public Health

- > Health information dissemination: Social networks
- Health program adherence: ML & Bandits
- COVID-19: Agent-based modeling

Conservation

COVID-19: Agent-based Simulation Model

Wilder



RESEARCH ARTICLE

Modeling between-population variation in COVID-19 dynamics in Hubei, Lombardy, and New York City

Bryan Wilder,

Marie Charpignon,

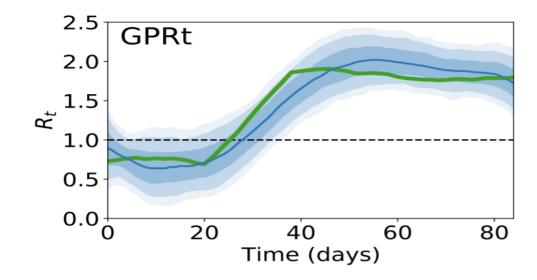
Jackson A. Killian, Han-Ching Ou, Aditya Mate, Shahin Jabbari,

Andrew Perrault,

Angel N. Desai,

Milind Tambe, and Maimuna S. Majumder

PNAS October 13, 2020 117 (41) 25904-25910; first published September 24, 2020; https://doi.org/10.1073/pnas.2010651117



Tracking disease outbreaks from sparse data with Bayesian inference

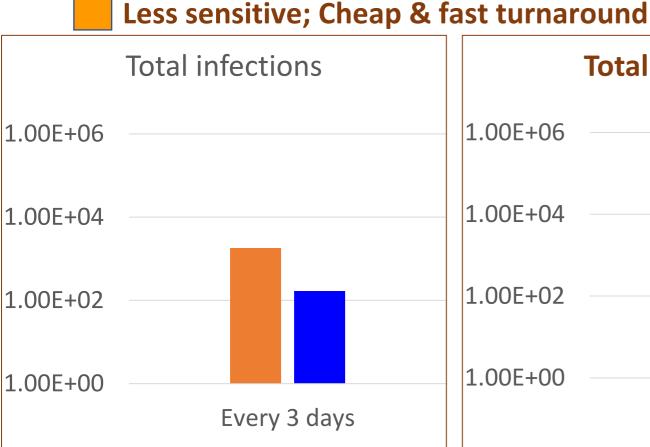
Bryan Wilder, Michael Mina, Milind Tambe

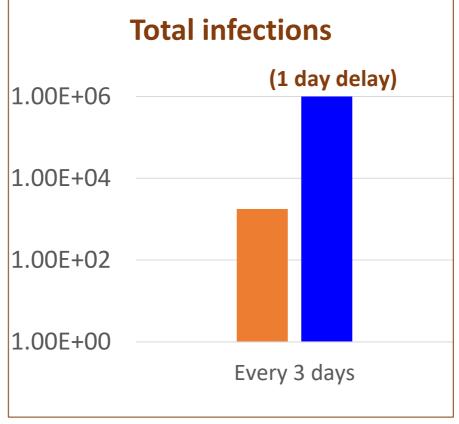
John A. Paulson School of Engineering and Applied Sciences, Harvard University T.H. Chan School of Public Health, Harvard University bwilder@g.harvard.edu, mmina@hsph.harvard.edu, milind_tambe@harvard.edu

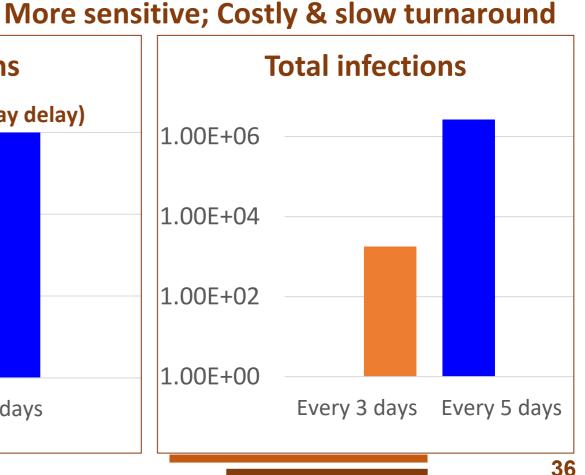
COVID Testing Policy: Accuracy vs Ease

- Range of tests entering market, varying sensitivity/cost: Quantity vs Quality?
 - qRT-PCR ("gold standard"): Detect viral concentration of 10³/mL, \$50-100
 - Antigen strip ("Less sensitive"): 10⁶/mL, \$3-5

Rapid turnaround time & frequency more critical than sensitivity for COVID-19 surveillance







COVID Testing Policy: Impact

- Covered in NYT, WaPo, Time, The Atlantic, The Hill, etc.
- Allowed epi collaborators to advocate to FDA/CDC

COVID Testing Policy: Impact

The Abbott BinaxNOW COVID-19 at-home test was one of two to receive FDA approval this week. The over-the-counter test does not need a prescription.

Courtesy of Abbott

HEALTH & MEDICINE

Approval of at-home tests releases a powerful pandemic-fighting weapon

Chan School's Mina says despite vaccination campaign success, diagnostic tools still important

One of them is Michael Mina, assistant professor of epidemiology, who has called on federal regulators for much of the past year to clear the rapid antigen tests, arguing that widespread, frequent use of the diagnostic has the potential to stop outbreaks early and keep case numbers down.

Outline

Public Health

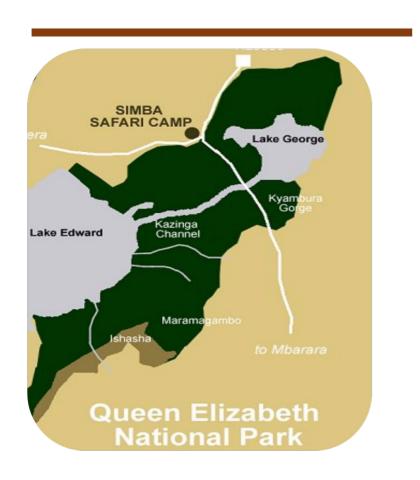
Conservation

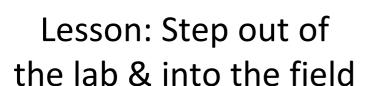
- > Protect wildlife, forests, fisheries: Game-focused learning
- > Integrating real time data for protection: Signaling games

Protecting Conservation Areas: Green Security Games

(IJCAI 2015)

Fang

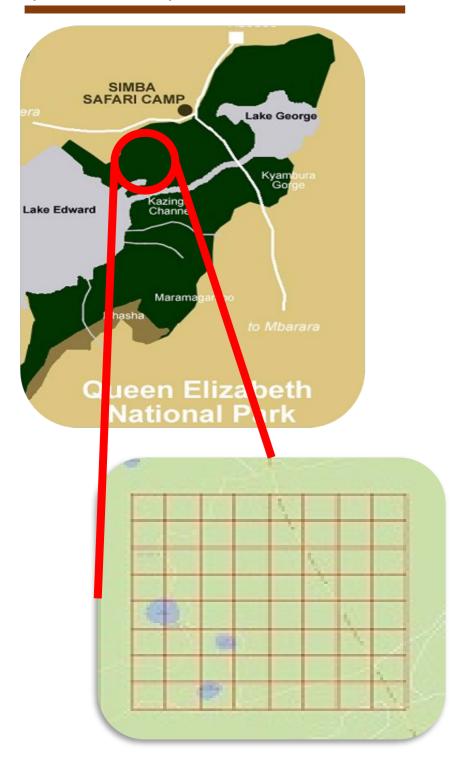




Snare or Trap

From Stackelberg Security Games to Green Security Games

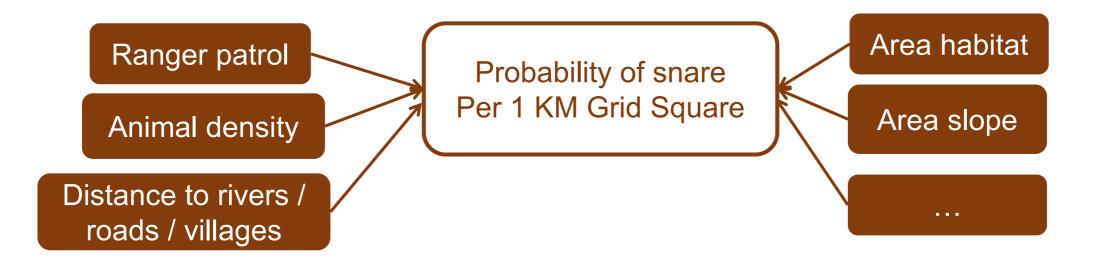
(IJCAI 2015)

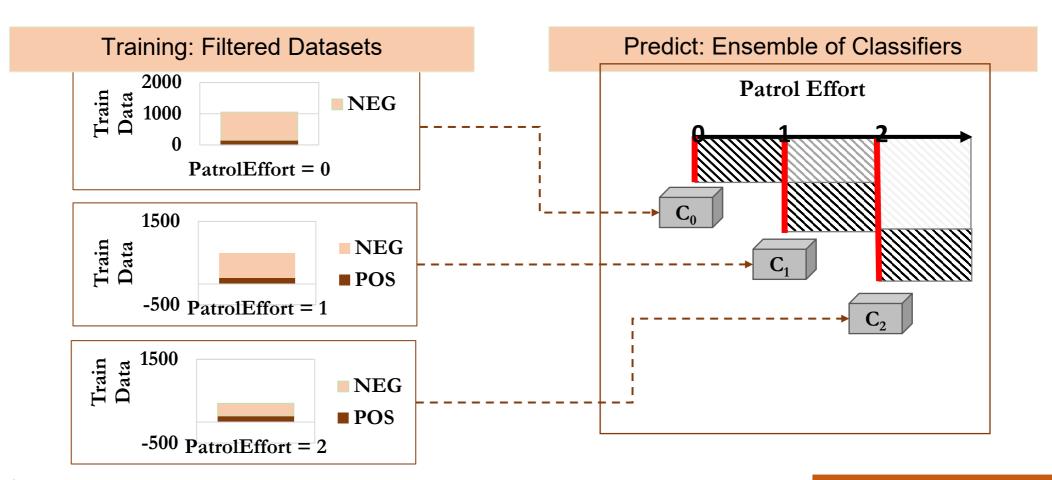


- Learn poacher response model at each target
- > So can figure out response by patrols

Learning Adversary Response Model: Uncertainty in Observations

Nguyen Gholami

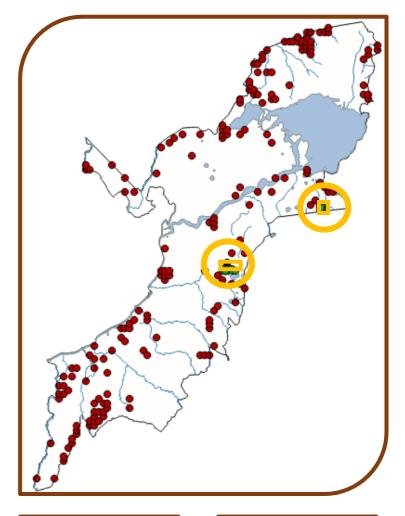




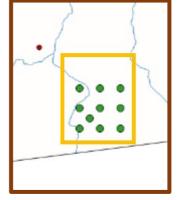
PAWS: First Pilot in the Field

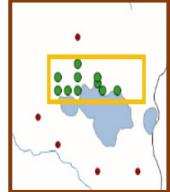
(AAMAS 2017)

Two 9-sq.km areas, infrequent patrols

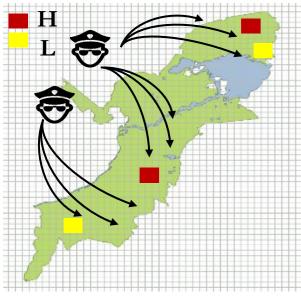


- Poached elephant
- 1 elephant snare roll
- 10 Antelope snares

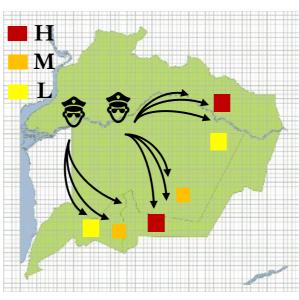




PAWS Predicted High vs Low Risk Areas: 3 National Parks, 24 areas each, 6 months

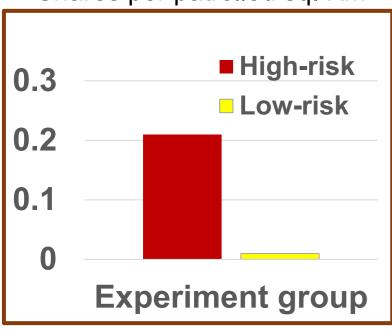


Queen Elizabeth **National Park**

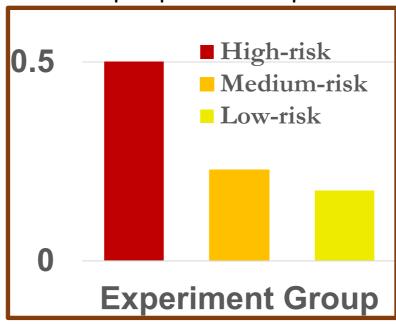


Murchison **Falls National** Park

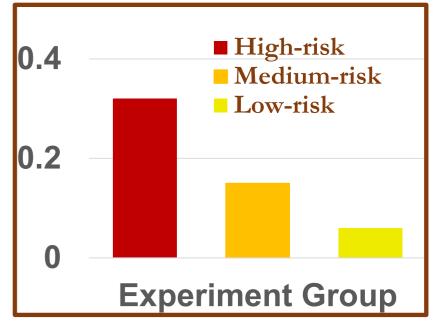
Snares per patrolled sq. KM



Snares per patrolled sq. KM



Snares per patrolled sq. KM



PAWS Real-world Deployment **Cambodia: Srepok Wildlife Sanctuary**

(ICDE 2020)

2019 PAWS: 521 snares/month

VS

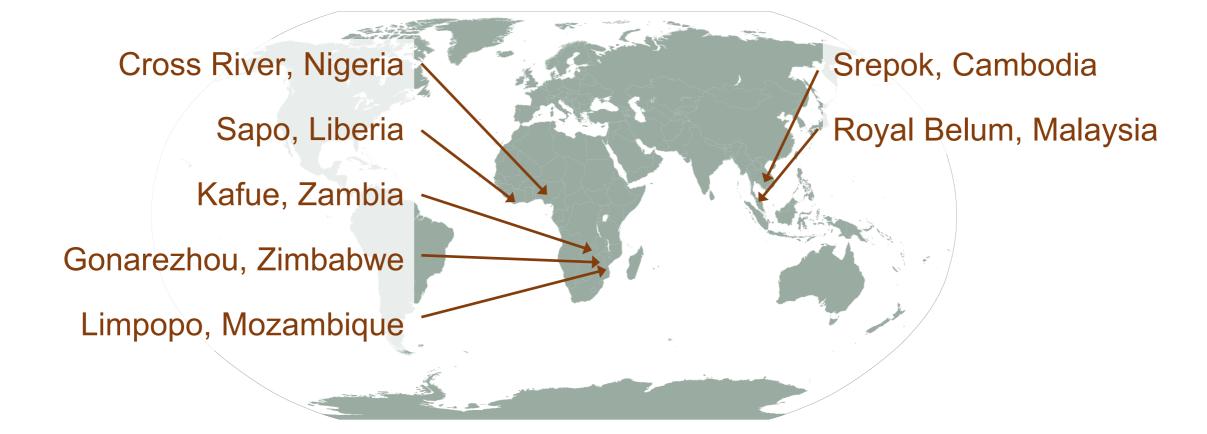
2018: 101 snares/month

2021 PAWS

1,000 snares found in March

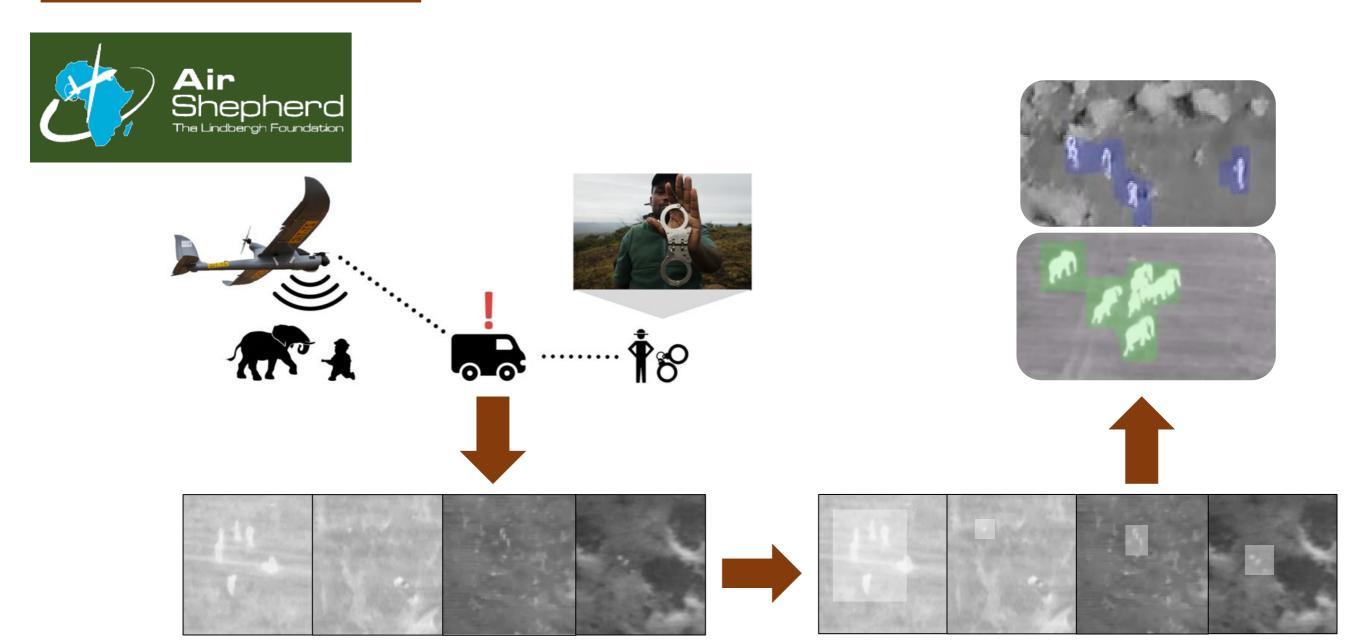
PAWS GOES GLOBAL with SMART platform!!

Protect Wildlife 800 National Parks Around the Globe



Direction #1: Integrating Real-Time "SPOT" Information (IAAI 2018)

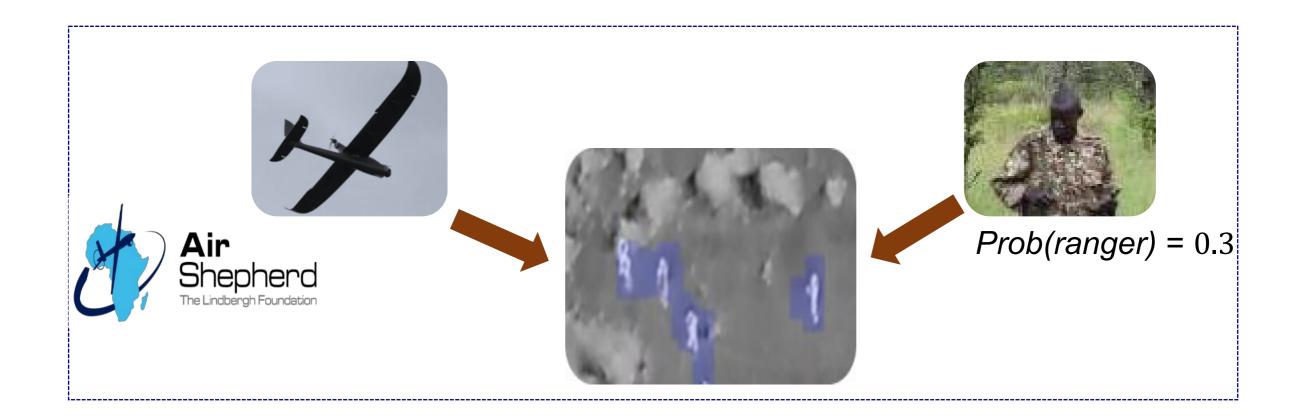
Bondi



Goal: automatically find poachers

Drone Used to Inform Rangers

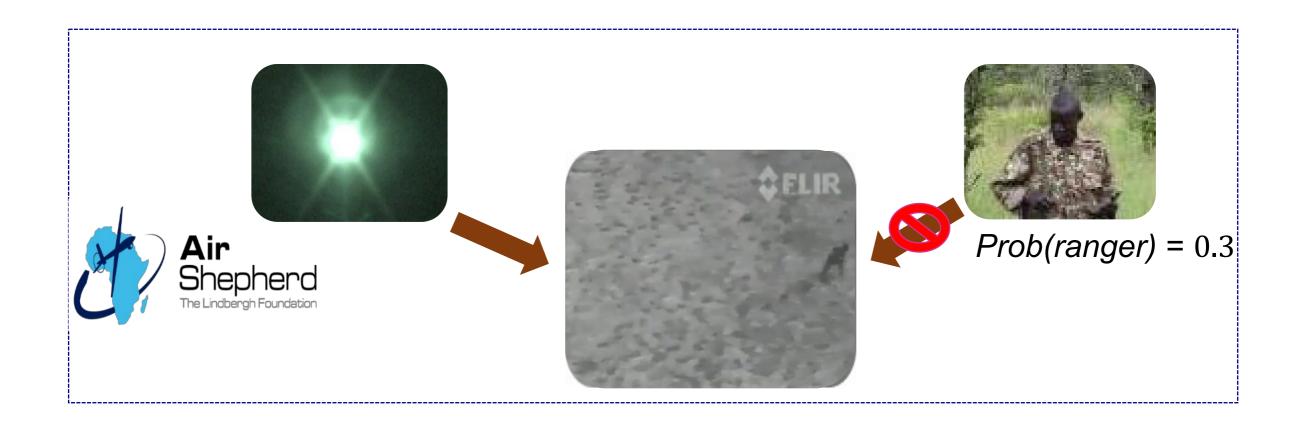
- Xu
- Bondi
- \triangleright Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving



Drone Used to Inform Rangers

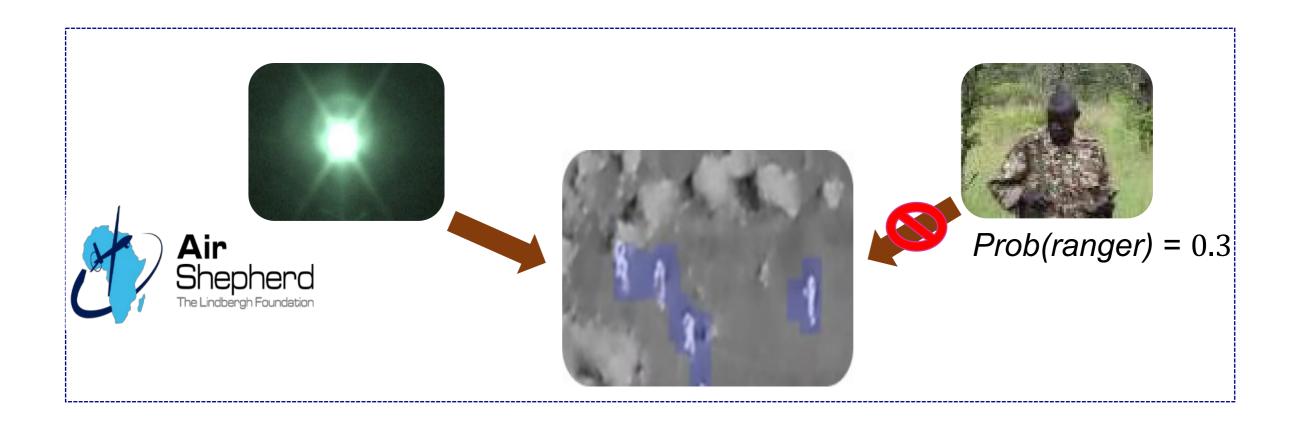
- Xu
- Bondi

- \triangleright Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving



Drone Used to Inform Rangers

- Xu
- Bondi
- \triangleright Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving
- Must be strategic in deceptive signaling

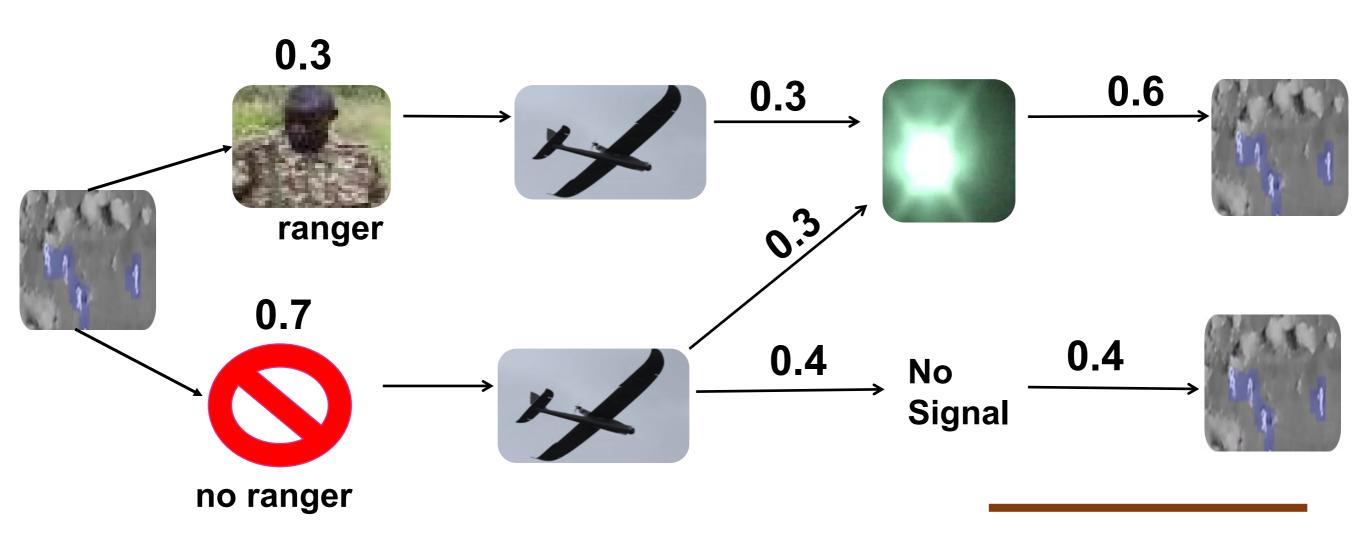


Exploiting Informational Advantage Defender Knows Pure & Mixed Strategy

(AAAI 2018, AAAI 2020, AAMAS 2021)

Si-G Model: Stackelberg Security Games with Optimal Deceptive Signaling

- > Poacher best interest to "believe signal" even if know 50% defender deception
- Recent work used RL for deception policy generation (AAMAS 2021)



Future: Al for Social Impact (Al4SG or Al4SI)

Achieving social impact & AI innovation go hand in hand

Empower non-profits to use AI tools; avoid being gatekeepers to AI4SI tech

Data to deployment: Not just improving algorithms, new AI4SI evaluation

Important to step out of the lab and into the field

Embrace interdisciplinary research -- social work, conservation

Lack of data is the norm, a feature; part of the project strategy

Key Collaborators on Papers Referenced

(In the order papers referenced)

- Eric Rice (USC)
- Nicole Immorlica (MSR)
- Yair Zick (UMASS, Amherst)
- Balaraman Ravindran (IIT-Madras)
- Amit Sharma (MSR)
- Maia Majumder (Harvard)

- Michael Mina (Harvard)
- Daniel Larremore (Colorado)
- Andy Plumptre (Cambridge)
- Rohit Singh (WWF)
- Phebe Vayanos (USC)
- Bistra Dilkina (USC)

@MilindTambe_Al

Collaborate to realize Al's tremendous potential to Improving society & fighting social injustice