Advanced mass spectrometry in biomarker discovery for emerging contaminants

Assessing human exposure

Prof. Dr. Adrian Covaci

6

Outline

- Investigating external exposure
- In vitro identification of biomarkers to assess internal exposure
- Applications in human samples

Target analysis of biological samples

Suspect screening of biological samples

6

Investigating external exposure

INTAKE

Food

Dust

Consumer Products

Universiteit Antwerpen

Use:

Air

- target analysis
- suspect/non-target screening
- a combination of the two

Food and Chemical Toxicology 100 (2017) 1-7

Dietary intake of phosphorus flame retardants (PFRs) using Swedish food market basket estimations

Giulia Poma ^{a, *}, Anders Glynn ^b, Govindan Malarvannan ^a, Adrian Covaci ^{a, **}, Per Ola Darnerud ^{b, ***}

^a Toxicological Center, University of Antwerp, Universiteitsplein 1, B-261 ^b National Food Agency, P.O. Box 622, SE-75126 Uppsala, Sweden		TCEP	TPHP	EHDPHP	TDCIPP	TCIPP ^a
	RfD values (ng/kg bw/day)	22,000	70,000	-	15,000	80,000
	food groups Cereals	57	77	955	87	282
	Pastries	12	36	448	12	39
	Meat	21	97	136	39	15
	Fish	4	28	112	13	3
	Dairy, fluid	41	24	137	56	20
	Dairy, solid	11	11	79	11	7
	Eggs	2	2	25	4	3
JA JANA AN	Fats/oils	44	213	228	44	33
	Vegetables	81	13	55	72	36
A CORE OF CORE	Fruits	21	17	109	67	25
	Potatoes	14	23	44	36	21
proot food	Sugar/sweets	28	31	466	92	25
arget-1000	Beverages	70	78	472	269	63
	Total (ng/day)	406	650	3266	802	572
Universiteit Antwerr	Total ^b (ng/kg bw/day)	6.0	9.7	48.6	11.9	8.5

In-house database HECHIER (~3000 compounds)

Keywords: phthalates, terephthalates, adipates, sebacates, citrates, trimellitates, phosphates, carboxylic & dicarboxylic acids, pesticides (pyrethroids, neonicotinoids)

Data files Analysis

(Agilent Mass Hunter Qualitative Analysis software) Find by formula tool, Limitations derived from QC, CEF files creation

Mass Profiler Professional software Filtering/Features (compounds) Lists Generation

> ESI+; 348 ESI-; 726

Prioritization Lists (ESI+, ESI-) frequency in Ds, FBLKs, BLKs, & L.o.C. Selection of compounds for further

investigation L.o.C, type of application, theoretical bioaccessibility

Newly identified compounds in dust

Suspect - dust

Suspect screening analysis in house dust from Belgium using high resolution mass spectrometry; prioritization list and newly identified chemicals

Christina Christia^{*}, Giulia Poma, Noelia Caballero-Casero, Adrian Covaci^{**}

Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium

Information on newly identified compounds in Flemish dust.

Compound Name	Acronyn	n Trade Names	Formula	ESI	RT	Monoisotopic	Precursor	Adduct	Mass	Isotopic	Product lons		DF	LogKow	Ba	Application
(Cas Num)					(min) Mass	lon		Diff. (ppm)	pattern Match Score %	CID 10 V	CID 30 V	% (W) S)			
Tributyl trimellitate (1726-23-4)	ТВТМ	DIPLAST TM 4, Morflex TM 540	C ₂₁ H ₃₀ O ₆	+	18.7	378.2041	379,2116	[M- H]+	-0.13	99,95	305.135, 249.074, 193.012, 57.070	249.0742, 193.0124, 57.0704	8/ 24	5.92	0.61	Plasticizer, additive in adhesives or printing inks, nail coatings, nail coatings removers
Bis (3,5,5- trimethylhexyl) phosphate (7153-98-2)	Bis- 3,5,5- TMHPh	n.a.	C ₁₈ H ₃₉ PO ₄	.+	14.8	350.2585	351.2623	[M- H]+	0,52	94,08	98.9839, 71.0856, 57.0699	98.9833, 71.0850, 57.0698	32/ 8	6.8	0.44	Chemical blowing agent in polyurethane foams
lso-octyl 2- phenoxy ethyl terephthalate (72512-75-5)	IOPhET	n.a.	C ₂₄ H ₃₀ O ₅	+	18.6	398.2094	399.21161	[M- H]+	1.19	95.23	305,1750, 261,1468, 149,0205	305.1778, 261.1507, 149.0255, 121.0288, 65.0414	52/ 4	6.76	0.44	Additive in adhesives
Dimethyl Azelate (1732-10-1)	DMA	n,a.	C ₁₁ H ₂₀ O ₄	+	12,2	216.1361	217.1436	[M- H]+	-0,2	<mark>99.7</mark> 3	125.0950, 97.1005, 83.0860, 55.0545	55.0546, 125.0927	28/ 56	2.86	0.8	Additive in materials of food packaging, active ingredient in pesticide products
Dimethyl sebacate (106-79-6)	DMS	n.a.	C ₁₂ H ₂₂ O ₄	+	13.8	230.1518	231,1596	[M- H]+	-2.29	99.95	199,1334, 171,1365, 139,1114, 69,0705, 55,0502	69.0703, 55.0547	12/ 20	3.35	0.8	Additive in paints, fillers, adhesives, pesticides and ingredient used in automotive industry
Dipropylene glycol dibenzoate (27138-31-4)	DiPGDB	VELSIFLEX® 328, Velsiflex 342, Finsolv® PG-22	C ₂₀ H ₂₂ O ₅	+	14.9	342,1467	343,1544	[M- H]+	-1.26	99,88	163.0755, 105.0338, 77.0395	163.0753, 105.0340, 77.0393	40/ 48	3.9	0.8	Additive in adhesives, building construction materials, paints, manufacture of furniture, personal care products
3,5-Di-tert-butyl-4- hydroxy benzaldehyde (1620-98-0)	BHT- CHO	n.a.	C ₁₅ H ₂₂ O ₂	-	14.3	234.162	233.1547	[M-H]-	-1,25	99.8	217.1226, 59.0147	217.1221, 59.0147, 133.0656	8/ 28	4.2	0.8	Additive chemical in toys, drug product or related with the manufacturing of drugs

Target - dust

Environmental Research 197 (2021) 111193

Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

老

environmental

From suspect screening to target analysis: Occurrence of six newly identified compounds in indoor dust from Belgium*

Christina Christia , Giulia Poma, Noelia Caballero-Casero 1, Adrian Covaci

Descriptive statistics for 50 paired dust samples from Flemish region (Belgium).

Targeted	Mean	SD	Median	Min	Max	DF	mLOQ
Analyte	(8/84)		(8/84)	(34) (3	(g)	70	(8/84)
Winter (n =	25)						
DMA	0.01	0.01	0.01	0.01	0.05	16	0.03
DMS	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.09
DiPGDB	16	23	6.2	0.56	89	100	0.08
TBTM	0.67	2.5	0.04	0.02	12	64	0.03
IOPhET	0.01	0.01	2E-03	2E-	0.03	48	4E-03
				03			
TMHPh	0.27	0.36	0.06	0.02	1.2	68	0.03
Summer (n	= 25)						
DMA	0.05	0.03	0.04	0.02	0.15	60	0.03
DMS	0.02	0.03	0.01	0.01	0.12	8	0.09
DIPGDB	13	26	5.4	0.83	129	100	0.08
TBTM	0.14	0.36	0.01	0.01	1.7	48	0.03
IOPhET	2E-03	4E-	6E-04	6E-	0.02	16	4E-03
		03		04			
TMHPh	0.12	0.24	0.01	0.01	1.1	36	0.03

Adults Toddlers Adults Toddlers Adults

Toddlers

Target - dust

- DiPGDB
- TBTM
- TMHPh
- x; mean value
- -; median value

Fig. 5. ADD_{ingestion} (µg/kg/day) calculated for adults and toddlers per season.

Adults Toddlers Adults Toddlers Adults Toddlers

6

In vitro identification of biomarkers

- to assess internal exposure

Metabolite simulation

- Rat liver S9 metabolism (OECD Toolbox)
- BioTransformer

- Meteor
- MetaSense

ADVANCED TOOLS FOR EXPOSURE ASSESSMENT AND BIOMONITORING

ADVANCED TOOLS FOR EXPOSURE ASSESSMENT AND BIOMONITORING

- identify best to monitor biomarkers in human body (using in vitro testing with human liver microsomes or liver cells)

Identification of metabolites

Suspect or Non-target screening?

Suspect screening

Subscription software

Free access

Biotransformer.ca

<u>ChemSpider</u>

Database

- = List of chemicals of interest
 - Name
 - Chemical formula
 - Monoisotopic mass
 - Retention time
 - MS/MS spectra

CompTox Chemicals Dashboard

8	875 Thousand Chei	micals
Chemicals	Product/Use Categories	Assay/Gene
	W W WW WI B	-

Non-target screening

Open Source Workflow

Find all features of interest in samples

Prioritization of features

Identification confidence

Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. Environ Sci Technol 2014, 48, 2097-2098

Correct annotation is the key to communicate confidence

Identification of metabolites

How to facilitate the detection of halogenated chemicals?

- Mass defect filtering:
 - based on the particularity that halogens have a negative mass defect and that halogenated FRs contain > 3 halogen atoms;
 - output: extracted compounds

- Isotope cluster analysis:
 - based on the exact mass difference and intensity between two isotopomers;

Nele Van den Eede 6*, Claudio Erratico 4, Vassiliki Exarchou 5, Walid Maho 4, Hugo Neels 4, Adrian Covaci 8*

Ballesteros et al., Toxicol Lett, 2014

Universiteit Antwerpen

In vitro metabolism of 2-ethylhexyldiphenyl phosphate (EHDPHP) by human liver microsomes

CrossMark

Ana Ballesteros-Gómez^{a,b,*}, Claudio A. Erratico^a, Nele Van den Eede^a, Alin C. Ionas^a, Pim E.G. Leonards^b, Adrian Covaci^a

EHDPHP

6

60 morning urine samples from A-TEAM cohort

Potential biomarkers of exposure

6	Summary					
Parent	Hydrolysis metabolite	Oxidative metabolite				
TDCIPP	BDCIPP	-				
TCIPP	BCIPP	TCIPP-OH				
TBOEP	BBOEP	TBOEP-OH Desbutyl-TBOEP				
ТРНР	DPHP	HO-TPHP				
EHDPHP	EHPHP DPHP	5-HO-EHDPHP				
RDP	DPHP	HO-RDP, di-OH-RDP				
BDP	DPHP	HO-BDP, others				
V6	Several	Several				

Specific metabolite

Non-specific metabolite

6

Target analysis of biological samples

In vivo application

QA/QC measures – target analysis

- QA/QC activities
- Participation in 4 rounds of Interlab comparison organised within HBM4EU (within WP9)
 passed each time for DPHP, BDCIPP and BCIPP
- Participation since 2018 in the Canadian AMAP interlab scheme
 - Passed each round for DPHP and BDCIPP
- Established indicative values for PFR metabolites in SRM 3673 (organics in human urine)

Towards establishing indicative values for metabolites of organophosphate ester contaminants in human urine

Michiel Bastiaensen ^a, Nele Van den Eede ^a, Guanyong Su ^b, Robert J. Letcher ^c, Heather M. Stapleton ^d, Adrian Covaci ^{a, *}

Japan: Hokkaido study

PFR metabolites in Japanese children (in ng/mL)

- 8 out of 14 metabolites frequently detected
- Median concentrations < 1 ng/mL
- Increased exposure to TBOEP, specific to Japan

Universiteit Antwerpen

Araki et al., Environ Int 2018

Main OPEs in food : Main OPE metabolites in urine :

TPHP, TCIPP and EHDPHP DPHP, BCIPHIPP and EHPHP

Estimated daily intake for PFRs (FLEHS IV)

	$EDI = \left(\frac{c_{meta}}{F_{UE}}\right)$	$\left(\begin{array}{c} \times V_{urine} \\ \times bw \end{array} \right)$	$\times \frac{MW_p}{MW_m}$	-24-	
EDIs adolescents	TPHP	TDCIPP	TCIPP	TBOEP	EHDPHP
in ng/kg bw/day (<i>n</i> = 582)	based on DPHP	based on BDCIPP	based on BCIPHIPP	based on BBOEHEP	based on sum EHDPHP
F _{ue} (S9)	0.19	0.68	0.28	0.16	0.2
50 th per	197.7	14.5	57.4	6.3	567.7
95 th per	640.0	119.1	517.5	44.2	2004.2
RfD (ng/kg bw/day)	2.0x10 ⁴	2.0x10 ⁴	1.0x10 ⁴	1.5x10 ⁴	1.5x10⁴
% > RfD	0%	0%	0.17%	0%	0%
ratio RfD/95 th per	31	168	19	340	7

Bastiaensen et al. (2021) Environ. Int.

Suspect screening of biological samples

Chemosphere 280 (2021) 130683

Identification of chemicals of emerging concern in urine of Flemish adolescents using a new suspect screening workflow for LC-QTOF-MS

Noelia Caballero-Casero ^{a, *, 1}, Gabriela Castro ^{b, 2}, Michiel Bastiaensen ^a, Celine Gys ^a, Nik van Larebeke ^c, Greet Schoeters ^{d, e}, Adrian Covaci ^{a, **}

Sample treatment of urine samples and instrumental analysis

Suspect screening data-analysis

QA/QC measures – suspect screening analysis

Trends in Analytical Chemistry 136 (2021) 116201

ARRENT C	Contents lists available at ScienceDirect	TrA
100	Trends in Analytical Chemistry	
FLSEVIER	journal homepage; www.elsevier.com/locate/trac	

Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring

Noelia Caballero-Casero ^{a, **}, Lidia Belova ^a, Philippe Vervliet ^a, Jean-Philippe Antignac ^b, Argelia Castaño ^c, Laurent Debrauwer ^{d, e}, Marta Esteban López ^c, Carolin Huber ^f, Jana Klanova ^g, Martin Krauss ^f, Arjen Lommen ^h, Hans G.J. Mol ^h, Herbert Oberacher ⁱ, Olga Pardo ^J, Elliott J. Price ^{g, k}, Vera Reinstadler ⁱ, Chiara Maria Vitale ^g, Alexander L.N. van Nuijs ^{a, 1}, Adrian Covaci ^{a, *, 1}

> Oberacher et al. Environ Sci Eur (2020) 32:43 https://doi.org/10.1186/s12302-020-00314-9

Environmental Sciences Europe

RESEARCH

Open Access

A European proposal for quality control and quality assurance of tandem mass spectral libraries

Herbert Oberacher^{1*}, Michael Sasse², Jean-Philippe Antignac³, Yann Guitton³, Laurent Debrauwer^{4,5}, Emilien L. Jamin^{4,5}, Tobias Schulze⁶, Martin Krauss⁶, Adrian Covaci⁷, Noelia Caballero-Casero⁷, Kathleen Rousseau⁸, Annelaure Damont⁸, François Fenaille⁸, Marja Lamoree⁹ and Emma L. Schymanski^{10*}¹⁰

45 Identified ECs in urine (Level of identification 1-3)

Identification of chemicals of emerging concern in urine of Flemish adolescents using a new suspect screening workflow for LC-QTOF-MS

Noelia Caballero-Casero ^{a, *, 1}, Gabriela Castro ^{b, 2}, Michiel Bastiaensen ^a, Celine Gys ^a, Nik van Larebeke ^c, Greet Schoeters ^{d, e}, Adrian Covaci ^{a, **}

^a Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium

^b Department of Analytical Chemistry, Nutrition and Food Sciences. Institute of Research on Chemical and Biological Analysis (IAQBUS). Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain

^c Department of Radiotherapy and Experimental Cancerology, De Pintelaan 185, 9000 Ghent, Belgium and Vrije Universiteit Brussel (VUB), Department of Analytical, Environmental and Geochemistry (AMGC), Pleinlaan 2, 1050, Brussels, Belgium

^d VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium

e Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium

45 Identified ECs in urine (Level of identification 1-3)

Chemical class	Compound	Polarity	MS ready Formula	Level of Identification ^a	DF Total (%)
PPCPs	Methylparaben (MeP)	ESI (-)	C ₈ H ₈ O ₃	L1	10
	Acetylated product of Methylparaben	ESI (+)	$C_{10}H_{11}O_4$	L3	88
	Ethylparaben glucuronide	ESI(+)	C15H18O9	L2	90
	Methylation product of Ethylparaben	ESI(+)	$C_{10}H_{12}O_3$	L3	66
	Oxidation product of Methylparaben	ESI (-)	C ₈ H ₈ O ₄	L3	38
	Glyceramide	ESI(+)	C ₃ H ₇ NO ₃	L3	94
	Oxidation product of Dimethyl sebacate	ESI(-)	$C_{12}H_{22}O_5$	L3	82
	1H-Benzotriazole	ESI(+)	C ₆ H ₅ N ₃	L2	2
	Me-BTR (Tolytriazole)	ESI(+)	C7H7N3	L2	4
	Reduction (NH)_xylyltriazole	ESI(-)	$C_{10}H_9N_2$	L3	66
	Benzoic acid	ESI(+)	$C_7H_6O_2$	L2	10
	4-Hydroxybenzoic acid	ESI(+)	C ₇ H ₆ O ₃	L2	4
	Kojic Acid	ESI(+)	C ₆ H ₆ O ₄	L2	2
	Umbelliferon	ESI(+)	$C_9H_6O_3$	L2	2
	3-aminobenzoic acid	ESI(+)	C7H7NO2	L2	14
	Lauryl sulfate	ESI (-)	C12H26O4S	L2	52
Plasticizers	Cyclohexyl pentyl phthalate; Phthalic acid	ESI(+)	C19H26O4	L3	78
	Cyclohexyl pentyl phthalate glucuronide; Phthalic acid glucuronide	ESI (+)	C25H34O10	L2	72
	Terephthalic acid glucuronide	ESI (+)	C14H14O10	L2	90
	Methylation product of Dimethyl terephthalate	ESI (+)	C11H12O4	L3	42
	Methylation product of Terephthalate	ESI(-)	$C_9H_6O_4$	L3	100
	Monopropyl Phthalate (MPrP)	ESI (+)	C11H12O4	L3	38
	Butylene terephthalate glucuronide	ESI(+)	C18H20O10	L2	78
	Di-n-nonyl phthalate glucuronide	ESI (+)	C32H50O10	L3	42
	Mono-iso-nonyl phthalate glucuronide	ESI(+)	C23H32O10	L2	96
	Mono-n-pentyl phthalate glucuronide	ESI(+)	C19H24O10	L3	100
	Methylation product of Mono(2-ethyl-5-hydroxyhexyl) phthalate	ESI (+)	C17H24O5	L3	100
	Methylation product of Monobenzyl phthalate	ESI(+)	C16H14O4	L3	90
	Oxidation product of Mono-carboxy-isodecyl phthalate	ESI(+)	C18H24O7	L3	76
	Mono-(5-carboxypentyl) phthalate	ESI(+)	$C_{14}H_{16}O_{6}$	L3	92
	Mono-hydroxy-isononyl phthalate	ESI(+)	C17H24O5	L3	100
	Bisphenol S (BPS)	ESI (-)	C12H10O4S	L1	18

45 Identified ECs in urine (Level of identification 1-3)

Chemical class	Compound	Polarity	MS ready Formula	Level of Identification ^a	DF Total (%)
Antioxidant phenols	Acetylated product of mono-5-carboxy-2-ethylpentyl adipate	ESI (-)	C16H27O7	L3	26
	3,5-di-tert-butyl-4-hydroxy-benzoic acid glucuronide	ESI(-)	$C_{21}H_{30}O_9$	L3	80
UV filters	Trolamine salicylate	ESI(+)	C13H21NO6	L3	52
	Cinoxate glucuronide	ESI (+)	C20H26O10	L2	78
	Bis(4-hydroxyphenyl)methanone glucuronide	ESI(-)	C19H18O9	L2	90
Pesticides	Piperonyl butoxide	ESI(+)	$C_{19}H_{30}O_5$	L2	86
	Bacimethrin	ESI (+)	$C_6H_9N_3O_2$	L3	82
	Methothrin glucuronide	ESI(+)	$C_2H_{34}O_9$	L3	58
Food additives	2-Methylindole	ESI(+)	C ₉ H ₉ N	L2	6
	Coumarin	ESI(+)	$C_9H_6O_2$	L2	32
	Protocatechuic aldehyde	ESI(-)	$C_7H_6O_3$	L2	14
	Benzeneformic acid	ESI(-)	$C_7H_6O_2$	L2	4
	Dodecylbenzenesulfonic acid	ESI (-)	C18H30O3S	L2	96

^a Level of identification according to Schymanski et al. (2014). ESI: electrospray ionisation; DF: detection frequency (%).

Quo Vadis?

- Identification of emerging contaminants in relevant samples for human exposure (food, dust, consumer products)
- Identification of biomarkers of emerging contaminants in *in vitro* and *in vivo* situations
- Suitability of *in vitro identified* metabolites in *in vivo* samples

Several running projects at the ToxCenter tackling these topics

Thank you for your attention !!

HBM4EU

HOKKAIDO UNIVERSITY

science and policy for a healthy future

